aimarsg commited on
Commit
1ab7a91
1 Parent(s): 74d7b8b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: testlink-class
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # testlink-class
19
+
20
+ This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1523
23
+ - Precision: 0.6630
24
+ - Recall: 0.7135
25
+ - F1: 0.6873
26
+ - Accuracy: 0.9745
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 32
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 30
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 29 | 0.2337 | 0.0 | 0.0 | 0.0 | 0.9440 |
58
+ | No log | 2.0 | 58 | 0.2138 | 0.2632 | 0.0585 | 0.0957 | 0.9526 |
59
+ | No log | 3.0 | 87 | 0.1586 | 0.3824 | 0.1520 | 0.2176 | 0.9557 |
60
+ | No log | 4.0 | 116 | 0.1321 | 0.4444 | 0.2807 | 0.3441 | 0.9635 |
61
+ | No log | 5.0 | 145 | 0.1264 | 0.4422 | 0.3801 | 0.4088 | 0.9629 |
62
+ | No log | 6.0 | 174 | 0.1228 | 0.5224 | 0.4094 | 0.4590 | 0.9679 |
63
+ | No log | 7.0 | 203 | 0.1117 | 0.5706 | 0.5906 | 0.5805 | 0.9690 |
64
+ | No log | 8.0 | 232 | 0.1190 | 0.4832 | 0.6725 | 0.5623 | 0.9658 |
65
+ | No log | 9.0 | 261 | 0.1130 | 0.6022 | 0.6374 | 0.6193 | 0.9712 |
66
+ | No log | 10.0 | 290 | 0.1230 | 0.6032 | 0.6667 | 0.6333 | 0.9715 |
67
+ | No log | 11.0 | 319 | 0.1264 | 0.6122 | 0.7018 | 0.6540 | 0.9712 |
68
+ | No log | 12.0 | 348 | 0.1370 | 0.5224 | 0.7485 | 0.6154 | 0.9657 |
69
+ | No log | 13.0 | 377 | 0.1259 | 0.6122 | 0.7018 | 0.6540 | 0.9726 |
70
+ | No log | 14.0 | 406 | 0.1375 | 0.5447 | 0.7485 | 0.6305 | 0.9692 |
71
+ | No log | 15.0 | 435 | 0.1379 | 0.6384 | 0.6608 | 0.6494 | 0.9728 |
72
+ | No log | 16.0 | 464 | 0.1398 | 0.5865 | 0.7135 | 0.6438 | 0.9715 |
73
+ | No log | 17.0 | 493 | 0.1470 | 0.5775 | 0.7193 | 0.6406 | 0.9706 |
74
+ | 0.086 | 18.0 | 522 | 0.1576 | 0.5446 | 0.7135 | 0.6177 | 0.9684 |
75
+ | 0.086 | 19.0 | 551 | 0.1489 | 0.6354 | 0.6725 | 0.6534 | 0.9725 |
76
+ | 0.086 | 20.0 | 580 | 0.1544 | 0.6591 | 0.6784 | 0.6686 | 0.9730 |
77
+ | 0.086 | 21.0 | 609 | 0.1489 | 0.6349 | 0.7018 | 0.6667 | 0.9734 |
78
+ | 0.086 | 22.0 | 638 | 0.1488 | 0.6821 | 0.6901 | 0.6860 | 0.9747 |
79
+ | 0.086 | 23.0 | 667 | 0.1523 | 0.5953 | 0.7485 | 0.6632 | 0.9717 |
80
+ | 0.086 | 24.0 | 696 | 0.1475 | 0.6543 | 0.7193 | 0.6852 | 0.9747 |
81
+ | 0.086 | 25.0 | 725 | 0.1507 | 0.6740 | 0.7135 | 0.6932 | 0.9752 |
82
+ | 0.086 | 26.0 | 754 | 0.1518 | 0.6703 | 0.7135 | 0.6912 | 0.9745 |
83
+ | 0.086 | 27.0 | 783 | 0.1517 | 0.6893 | 0.7135 | 0.7011 | 0.9754 |
84
+ | 0.086 | 28.0 | 812 | 0.1521 | 0.6524 | 0.7135 | 0.6816 | 0.9739 |
85
+ | 0.086 | 29.0 | 841 | 0.1521 | 0.6595 | 0.7135 | 0.6854 | 0.9743 |
86
+ | 0.086 | 30.0 | 870 | 0.1523 | 0.6630 | 0.7135 | 0.6873 | 0.9745 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.28.1
92
+ - Pytorch 2.0.0+cu118
93
+ - Datasets 2.12.0
94
+ - Tokenizers 0.13.3