--- base_model: - HuggingFaceTB/SmolLM-1.7B-Instruct - HuggingFaceTB/SmolLM-1.7B tags: - merge - mergekit - lazymergekit - HuggingFaceTB/SmolLM-1.7B-Instruct - HuggingFaceTB/SmolLM-1.7B --- # smollm-dareties smollm-dareties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [HuggingFaceTB/SmolLM-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-1.7B-Instruct) * [HuggingFaceTB/SmolLM-1.7B](https://huggingface.co/HuggingFaceTB/SmolLM-1.7B) ## 🧩 Configuration ```yaml slices: - sources: - layer_range: [0, 24] model: HuggingFaceTB/SmolLM-1.7B-Instruct parameters: density: [1, 0.7, 0.1] weight: 1.0 - layer_range: [0, 24] model: HuggingFaceTB/SmolLM-1.7B parameters: density: 0.33 weight: - filter: mlp value: 0.5 - value: 0 merge_method: dare_ties base_model: HuggingFaceTB/SmolLM-1.7B-Instruct parameters: normalize: true int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "aipib/smollm-dareties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```