File size: 6,954 Bytes
1e719dc 8c91e73 18545f0 59c4629 18545f0 9d481ad a592a49 18545f0 9d481ad 18545f0 a592a49 18545f0 9d481ad 18545f0 a592a49 18545f0 9d481ad 18545f0 9d481ad 18545f0 9d481ad 18545f0 9d481ad 18545f0 a592a49 18545f0 a592a49 18545f0 9d481ad 18545f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
---
license: apache-2.0
datasets:
- kaist-ai/CoT-Collection
metrics:
- accuracy
pipeline_tag: text-generation
---
# Model card for aiplanet/effi-13b
effi-13B parameters is a causal decoder-only model built by AI Planet based on Llama-2-13b-chat-hf and fine tuned using the 1.8 Million coversations from CoT dataset available in huggingface datasets. The model is made available under the Apache 2.0 license.
## Why use effi-13B-Instruct?
- This is a ready to use chat/instruct model based on Llama-2-13b-chat-hf, which provides a rationale for the context provided.
- Llama-2 is the best open-source model available. This is an instruct model, which may not be ideal for further finetuning. If you are interested in building your own instruct/chat model, we recommend starting from **Llama-2-13b-chat-hf**
You will need at least **85-100GB of memory to swiftly run inference with effi-13b**.
## Model Details
### Model Description
This model has been fine-tuned on Chain of Thought datasets, which has context from mixed sources with corresponding rationale. The final finetuned Large Language Model(LLM) have shown enhanced capabilities of solving novel tasks by providing a reasoning.
- **Developed by:** AI Planet
- **Model type:** Casual Decoder only
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Finetuned from model:** Llama-2-13b-chat-hf
### Direct Use
effi-13b has been finetuned on a Chain of Thought dataset.
### Out-of-Scope Use
Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
## Bias, Risks, and Limitations
This model has been majorly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
### Recommendations
We recommend users of effi-13b to develop guardrails and take appropriate precautions for any production use.
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information is needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
```
from transformers import (AutoModelForCausalLM, AutoTokenizer, pipeline)
model_card = "aiplanet/effi-13b"
#
model = AutoModelForCausalLM.from_pretrained(model_card)
tokenizer = AutoTokenizer.from_pretrained(model_card)
#
generate_text = transformers.pipeline(
model=model, tokenizer=tokenizer,
return_full_text=True, # langchain expects the full text
task='text-generation',
# we pass model parameters here too
temperature=0.4, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
max_new_tokens=512, # mex number of tokens to generate in the output
repetition_penalty=1.1 # without this output begins repeating
)
#
promt = """
Can you explain this code in detail?
def generate_stream(tokenizer, model, params, device,
context_len=2048, stream_interval=2):
prompt = params["prompt"]
l_prompt = len(prompt)
temperature = float(params.get("temperature", 1.0))
max_new_tokens = int(params.get("max_new_tokens", 256))
stop_str = params.get("stop", None)
input_ids = tokenizer(prompt).input_ids
output_ids = list(input_ids)
max_src_len = context_len - max_new_tokens - 8
input_ids = input_ids[-max_src_len:]
for i in range(max_new_tokens):
if i == 0:
out = model(
torch.as_tensor([input_ids], device=device), use_cache=True)
logits = out.logits
past_key_values = out.past_key_values
else:
attention_mask = torch.ones(
1, past_key_values[0][0].shape[-2] + 1, device=device)
out = model(input_ids=torch.as_tensor([[token]], device=device),
use_cache=True,
attention_mask=attention_mask,
past_key_values=past_key_values)
logits = out.logits
past_key_values = out.past_key_values
last_token_logits = logits[0][-1]
if device == "mps":
# Switch to CPU by avoiding some bugs in mps backend.
last_token_logits = last_token_logits.float().to("cpu")
if temperature < 1e-4:
token = int(torch.argmax(last_token_logits))
else:
probs = torch.softmax(last_token_logits / temperature, dim=-1)
token = int(torch.multinomial(probs, num_samples=1))
output_ids.append(token)
if token == tokenizer.eos_token_id:
stopped = True
else:
stopped = False
if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped:
output = tokenizer.decode(output_ids, skip_special_tokens=True)
pos = output.rfind(stop_str, l_prompt)
if pos != -1:
output = output[:pos]
stopped = True
yield output
if stopped:
break
del past_key_values
"""
#
system_message = "Given your chain of thought reasoning, provide a rationale for the context in the source."
prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n{prompt}. [/INST]" # replace the command here with something relevant to your task
#
result = generate_text(prompt)
print(result[0]['generated_text'].strip().split("[/INST]")[-1])
```
## Training Details
### Training Data
effi-13b has been finetuned on https://huggingface.co/datasets/kaist-ai/CoT-Collection
The data was tokenized with the **meta-llama/Llama-2-13b-chat-hf** tokenizer.
### Training Procedure
Fine-tuning approach using PefT and Qlora(https://huggingface.co/blog/4bit-transformers-bitsandbytes)
#### Training Hyperparameters
- **Training regime:**
- lora_alpha=32,
- lora_dropout=0.05,
- r=8,
- bias="none",
- task_type="CAUSAL_LM"
#
- load_in_4bit=True,
- bnb_4bit_quant_type = "nf4",
- bnb_4bit_use_double_quant=True,
- bnb_4bit_compute_dtype=torch.bfloat16
#
- num_train_epochs = 1
- fp16 = False
- bf16 = False
- per_device_train_batch_size = 1
- per_device_eval_batch_size = 1
- gradient_accumulation_steps = 4
- gradient_checkpointing = True
- max_grad_norm = 0.3
- learning_rate = 2e-4
- weight_decay = 0.001
- optim = "paged_adamw_32bit"
- lr_scheduler_type = "constant"
- max_steps = 500
- warmup_ratio = 0.03
- group_by_length = True
- save_steps = 25
- logging_steps = 5
- max_seq_length = 2048
- packing = False
- device_map = {"": 0}
## Evaluation
Paper coming soon.
See the OpenLLM Leaderboard(https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results.
## Citation
@article{effi-13b,
title={{effi-13b}: an open large language model with state-of-the-art performance},
author={aiplanet},
year={2023}
}
## Model Card Contact
community@aiplanet.com
|