File size: 1,571 Bytes
cb607fe
40b7c53
67b9cb2
6798193
4545b49
 
 
 
 
cb607fe
 
4545b49
 
cb607fe
4545b49
cb607fe
4545b49
 
0f38a78
cb607fe
4545b49
cb607fe
4545b49
cb607fe
4545b49
cb607fe
4545b49
cb607fe
4545b49
cb607fe
4545b49
cb607fe
4545b49
cb607fe
4545b49
cb607fe
4545b49
 
 
 
 
0f38a78
4545b49
 
cb607fe
4545b49
cb607fe
4545b49
 
0f38a78
 
 
cb607fe
 
4545b49
cb607fe
0f38a78
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: ft-bert-base-uncased-for-binary-search
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ft-bert-base-uncased-for-binary-search

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the https://www.kaggle.com/datasets/skywardai/network-vulnerability dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1812

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.1845        | 1.0   | 63   | 0.1808          |
| 0.1793        | 2.0   | 126  | 0.1811          |
| 0.2158        | 3.0   | 189  | 0.1812          |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.2.2
- Datasets 3.1.0
- Tokenizers 0.20.1