--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - funsd-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: ft-ms-layoutlmv3-funsd-layoutlmv3 results: - task: name: Token Classification type: token-classification dataset: name: funsd-layoutlmv3 type: funsd-layoutlmv3 config: funsd split: test args: funsd metrics: - name: Precision type: precision value: 0.89171974522293 - name: Recall type: recall value: 0.9041231992051664 - name: F1 type: f1 value: 0.8978786383818451 - name: Accuracy type: accuracy value: 0.8377510994888863 --- # ft-ms-layoutlmv3-funsd-layoutlmv3 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 1.0021 - Precision: 0.8917 - Recall: 0.9041 - F1: 0.8979 - Accuracy: 0.8378 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 10.0 | 100 | 0.5222 | 0.8477 | 0.8823 | 0.8647 | 0.8436 | | No log | 20.0 | 200 | 0.6686 | 0.8736 | 0.9026 | 0.8879 | 0.8357 | | No log | 30.0 | 300 | 0.7175 | 0.8759 | 0.9151 | 0.8950 | 0.8286 | | No log | 40.0 | 400 | 0.7636 | 0.8832 | 0.8977 | 0.8904 | 0.8426 | | 0.2392 | 50.0 | 500 | 0.9518 | 0.8820 | 0.9026 | 0.8922 | 0.8178 | | 0.2392 | 60.0 | 600 | 0.9803 | 0.8771 | 0.8897 | 0.8834 | 0.8121 | | 0.2392 | 70.0 | 700 | 1.0956 | 0.8883 | 0.9086 | 0.8983 | 0.8173 | | 0.2392 | 80.0 | 800 | 0.9517 | 0.8930 | 0.9076 | 0.9002 | 0.8444 | | 0.2392 | 90.0 | 900 | 1.0337 | 0.8950 | 0.9061 | 0.9005 | 0.8379 | | 0.0083 | 100.0 | 1000 | 1.0021 | 0.8917 | 0.9041 | 0.8979 | 0.8378 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.0 - Datasets 2.15.0 - Tokenizers 0.15.0