File size: 1,838 Bytes
ea32dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
tags:
- merge
- mergekit
- lazymergekit
- yuiseki/tinyllama-coder-sql-en-v0.1
- TinyLlama/TinyLlama-1.1B-Chat-v1.0
base_model:
- yuiseki/tinyllama-coder-sql-en-v0.1
- TinyLlama/TinyLlama-1.1B-Chat-v1.0
---

# chat-sql

chat-sql is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [yuiseki/tinyllama-coder-sql-en-v0.1](https://huggingface.co/yuiseki/tinyllama-coder-sql-en-v0.1)
* [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)

## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: yuiseki/tinyllama-coder-sql-en-v0.1
        layer_range: [0, 22]
      - model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
        layer_range: [0, 22]
merge_method: slerp
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
parameters:
  t:
    - filter: lm_head
      value: [0.75]
    - filter: embed_tokens
      value: [0.75]
    - filter: self_attn
      value: [0.75,0.25]
    - filter: mlp
      value: [0.25,0.75]
    - filter: layernorm
      value: [0.5,0.5]
    - filter: modelnorm
      value: [0.75]
    - value: 0.5
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "ajay141/chat-sql"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```