--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: test args: cord metrics: - name: Precision type: precision value: 0.9428783382789317 - name: Recall type: recall value: 0.9513473053892215 - name: F1 type: f1 value: 0.9470938897168405 - name: Accuracy type: accuracy value: 0.952037351443124 --- # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2267 - Precision: 0.9429 - Recall: 0.9513 - F1: 0.9471 - Accuracy: 0.9520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.56 | 250 | 1.0513 | 0.6817 | 0.7597 | 0.7186 | 0.7806 | | 1.4257 | 3.12 | 500 | 0.5744 | 0.8451 | 0.8660 | 0.8555 | 0.8697 | | 1.4257 | 4.69 | 750 | 0.3979 | 0.8720 | 0.9027 | 0.8871 | 0.9062 | | 0.4063 | 6.25 | 1000 | 0.3350 | 0.9107 | 0.9237 | 0.9171 | 0.9300 | | 0.4063 | 7.81 | 1250 | 0.2638 | 0.9313 | 0.9431 | 0.9372 | 0.9402 | | 0.2045 | 9.38 | 1500 | 0.2542 | 0.9205 | 0.9364 | 0.9284 | 0.9419 | | 0.2045 | 10.94 | 1750 | 0.2417 | 0.9335 | 0.9454 | 0.9394 | 0.9469 | | 0.1406 | 12.5 | 2000 | 0.2279 | 0.9371 | 0.9476 | 0.9423 | 0.9491 | | 0.1406 | 14.06 | 2250 | 0.2267 | 0.9401 | 0.9513 | 0.9457 | 0.9550 | | 0.1079 | 15.62 | 2500 | 0.2267 | 0.9429 | 0.9513 | 0.9471 | 0.9520 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0