akashmaggon's picture
Add new SentenceTransformer model.
0246a62 verified
metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      The U.S. International Trade Commission (ITC) has become a significant
      forum to litigate intellectual property disputes. An adverse result in an
      ITC action can lead to a prohibition on importing infringing products,
      which, given the importance of the U.S. market, could significantly impact
      a company including preventing the importation of many important products
      or necessitating workarounds that may limit certain features of their
      products.
    sentences:
      - What was the overall impact of foreign currencies on net sales in 2023?
      - >-
        What potential consequences could result from intellectual property
        disputes in the U.S. International Trade Commission for the company?
      - What was the total purchase consideration for the VMware acquisition?
  - source_sentence: >-
      Reinsurance contracts are normally classified as treaty or facultative
      contracts. Treaty reinsurance refers to reinsurance coverage for all or a
      portion of a specified group or class of risks ceded by a direct insurer
      or reinsurer, while facultative reinsurance involves coverage of specific
      individual underlying risks. Reinsurance contracts are further classified
      as quota-share or excess.
    sentences:
      - >-
        What type of information will you find under 'Note 13 — Commitments and
        Contingencies' in an Annual Report on Form 10-K?
      - >-
        What type of reinsurance contracts are offered by Berkshire Hathaway
        Reinsurance Group?
      - >-
        What are the consequences for a company violating anti-bribery laws in
        the U.S.?
  - source_sentence: >-
      Commitments and contingencies related to legal proceedings are detailed in
      Part II, Item 8, under 'Financial Statements and Supplementary Data – Note
      14'.
    sentences:
      - >-
        Where can one find commitments and contingencies related to legal
        proceedings in the context provided?
      - What is discussed in Item 3. Legal Proceedings of a company's report?
      - >-
        How are net realized capital gains and losses treated in the financial
        statements according to the Company?
  - source_sentence: >-
      The “Glossary of Terms and Acronyms” is included on pages 315-321 in the
      set of financial documents.
    sentences:
      - >-
        What are the principles used in preparing the discussed financial
        statements?
      - >-
        What is the total remaining budget for future common stock repurchases
        under the company's stock repurchase programs as of December 31, 2023?
      - >-
        Where is the “Glossary of Terms and Acronyms” located in a set of
        financial documents?
  - source_sentence: >-
      The table presents our market risk by asset category for positions
      accounted for at fair value or accounted for at the lower of cost or fair
      value, that are not included in VaR. As of December 2023, equity was at
      $1,562 million and debt was at $2,446 million.
    sentences:
      - >-
        What are the market risk values for Goldman Sachs' equity and debt
        positions not included in VaR as of December 2023?
      - >-
        What was the conclusion of the Company's review regarding the impact of
        the American Rescue Plan, the Consolidated Appropriations Act, 2021, and
        related tax provisions on its business for the fiscal year ended June
        30, 2023?
      - >-
        How much did the company's finance lease obligations total as of
        December 31, 2023?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6957142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8371428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8714285714285714
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9242857142857143
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6957142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27904761904761904
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17428571428571424
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09242857142857142
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6957142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8371428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8714285714285714
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9242857142857143
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8105294489003092
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7741910430839002
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7773317927980538
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.7
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8285714285714286
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8671428571428571
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9185714285714286
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27619047619047615
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1734285714285714
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09185714285714283
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8285714285714286
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8671428571428571
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9185714285714286
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8090367290103152
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7740351473922898
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7776494145961331
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6928571428571428
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8185714285714286
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8585714285714285
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.91
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6928571428571428
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27285714285714285
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17171428571428568
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09099999999999998
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6928571428571428
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8185714285714286
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8585714285714285
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.91
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8016663265681359
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7669977324263035
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7711841838569463
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6871428571428572
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8071428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8585714285714285
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8985714285714286
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6871428571428572
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26904761904761904
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1717142857142857
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08985714285714283
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6871428571428572
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8071428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8585714285714285
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8985714285714286
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7921056491431833
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7580946712018135
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7627063166788922
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.6642857142857143
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7842857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8257142857142857
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8728571428571429
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6642857142857143
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26142857142857145
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16514285714285715
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08728571428571427
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6642857142857143
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7842857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8257142857142857
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8728571428571429
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7689727571743198
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7358214285714282
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7406658506857838
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("akashmaggon/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'The table presents our market risk by asset category for positions accounted for at fair value or accounted for at the lower of cost or fair value, that are not included in VaR. As of December 2023, equity was at $1,562 million and debt was at $2,446 million.',
    "What are the market risk values for Goldman Sachs' equity and debt positions not included in VaR as of December 2023?",
    "What was the conclusion of the Company's review regarding the impact of the American Rescue Plan, the Consolidated Appropriations Act, 2021, and related tax provisions on its business for the fiscal year ended June 30, 2023?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6957
cosine_accuracy@3 0.8371
cosine_accuracy@5 0.8714
cosine_accuracy@10 0.9243
cosine_precision@1 0.6957
cosine_precision@3 0.279
cosine_precision@5 0.1743
cosine_precision@10 0.0924
cosine_recall@1 0.6957
cosine_recall@3 0.8371
cosine_recall@5 0.8714
cosine_recall@10 0.9243
cosine_ndcg@10 0.8105
cosine_mrr@10 0.7742
cosine_map@100 0.7773

Information Retrieval

Metric Value
cosine_accuracy@1 0.7
cosine_accuracy@3 0.8286
cosine_accuracy@5 0.8671
cosine_accuracy@10 0.9186
cosine_precision@1 0.7
cosine_precision@3 0.2762
cosine_precision@5 0.1734
cosine_precision@10 0.0919
cosine_recall@1 0.7
cosine_recall@3 0.8286
cosine_recall@5 0.8671
cosine_recall@10 0.9186
cosine_ndcg@10 0.809
cosine_mrr@10 0.774
cosine_map@100 0.7776

Information Retrieval

Metric Value
cosine_accuracy@1 0.6929
cosine_accuracy@3 0.8186
cosine_accuracy@5 0.8586
cosine_accuracy@10 0.91
cosine_precision@1 0.6929
cosine_precision@3 0.2729
cosine_precision@5 0.1717
cosine_precision@10 0.091
cosine_recall@1 0.6929
cosine_recall@3 0.8186
cosine_recall@5 0.8586
cosine_recall@10 0.91
cosine_ndcg@10 0.8017
cosine_mrr@10 0.767
cosine_map@100 0.7712

Information Retrieval

Metric Value
cosine_accuracy@1 0.6871
cosine_accuracy@3 0.8071
cosine_accuracy@5 0.8586
cosine_accuracy@10 0.8986
cosine_precision@1 0.6871
cosine_precision@3 0.269
cosine_precision@5 0.1717
cosine_precision@10 0.0899
cosine_recall@1 0.6871
cosine_recall@3 0.8071
cosine_recall@5 0.8586
cosine_recall@10 0.8986
cosine_ndcg@10 0.7921
cosine_mrr@10 0.7581
cosine_map@100 0.7627

Information Retrieval

Metric Value
cosine_accuracy@1 0.6643
cosine_accuracy@3 0.7843
cosine_accuracy@5 0.8257
cosine_accuracy@10 0.8729
cosine_precision@1 0.6643
cosine_precision@3 0.2614
cosine_precision@5 0.1651
cosine_precision@10 0.0873
cosine_recall@1 0.6643
cosine_recall@3 0.7843
cosine_recall@5 0.8257
cosine_recall@10 0.8729
cosine_ndcg@10 0.769
cosine_mrr@10 0.7358
cosine_map@100 0.7407

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 7 tokens
    • mean: 44.39 tokens
    • max: 512 tokens
    • min: 7 tokens
    • mean: 20.64 tokens
    • max: 51 tokens
  • Samples:
    positive anchor
    Johnson & Johnson reported cash and cash equivalents of $21,859 million as of the end of 2023. What was the amount of cash and cash equivalents reported by Johnson & Johnson at the end of 2023?
    Johnson & Johnson's consolidated statements of earnings for 2023 reported total net earnings of $35,153 million. What was the total net earnings for Johnson & Johnson in 2023?
    As of December 31, 2023, short-term investments were valued at $236,118 thousand and long-term investments at $86,676 thousand. What is the total value of short-term and long-term investments held by the company as of December 31, 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8122 10 1.5779 - - - - -
0.9746 12 - 0.7388 0.7509 0.7604 0.7081 0.7579
1.6244 20 0.6572 - - - - -
1.9492 24 - 0.7612 0.7670 0.7729 0.7269 0.7705
2.4365 30 0.4661 - - - - -
2.9239 36 - 0.7623 0.7702 0.7771 0.7386 0.7758
3.2487 40 0.3774 - - - - -
3.8985 48 - 0.7627 0.7712 0.7776 0.7407 0.7773
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}