File size: 894 Bytes
a159e85
 
0426e99
a159e85
 
 
 
 
cc186e5
a159e85
a5f2cf7
fb6a421
 
a5f2cf7
 
fb6a421
a5f2cf7
 
 
 
a159e85
 
9c0f335
a159e85
cc186e5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
---
language: tr
license: mit
---

# Turkish Named Entity Recognition (NER) Quantized Model

This model is the dynamically quantized version of the model
(https://akdeniz27/bert-base-turkish-cased-ner)

# How to use:
```
# First install "optimum[onnxruntime]":
!pip install "optimum[onnxruntime]"

# and import "ORTModelForTokenClassification":
from transformers import AutoTokenizer, pipeline
from optimum.onnxruntime import ORTModelForTokenClassification

model = ORTModelForTokenClassification.from_pretrained("akdeniz27/bert-base-turkish-cased-ner-quantized", file_name="model_quantized.onnx")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/bert-base-turkish-cased-ner-quantized")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
ner("your text here")
```
Pls refer (https://github.com/akdeniz27/dynamic_quantization) for details of quantization.