File size: 894 Bytes
a159e85 0426e99 a159e85 cc186e5 a159e85 a5f2cf7 fb6a421 a5f2cf7 fb6a421 a5f2cf7 a159e85 9c0f335 a159e85 cc186e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
---
language: tr
license: mit
---
# Turkish Named Entity Recognition (NER) Quantized Model
This model is the dynamically quantized version of the model
(https://akdeniz27/bert-base-turkish-cased-ner)
# How to use:
```
# First install "optimum[onnxruntime]":
!pip install "optimum[onnxruntime]"
# and import "ORTModelForTokenClassification":
from transformers import AutoTokenizer, pipeline
from optimum.onnxruntime import ORTModelForTokenClassification
model = ORTModelForTokenClassification.from_pretrained("akdeniz27/bert-base-turkish-cased-ner-quantized", file_name="model_quantized.onnx")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/bert-base-turkish-cased-ner-quantized")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
ner("your text here")
```
Pls refer (https://github.com/akdeniz27/dynamic_quantization) for details of quantization. |