File size: 1,903 Bytes
7b36cfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
base_model: amagzari/pegasus-cnn_dailymail-finetuned-samsum-v2
tags:
- generated_from_trainer
model-index:
- name: BART-model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BART-model

This model is a fine-tuned version of [amagzari/pegasus-cnn_dailymail-finetuned-samsum-v2](https://huggingface.co/amagzari/pegasus-cnn_dailymail-finetuned-samsum-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9435

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.4132        | 0.99  | 16   | 1.1373          |
| 1.3997        | 1.98  | 32   | 1.1288          |
| 1.3814        | 2.97  | 48   | 1.1147          |
| 1.5235        | 3.95  | 64   | 1.0936          |
| 1.1194        | 4.94  | 80   | 1.0703          |
| 1.356         | 5.99  | 97   | 1.0459          |
| 1.2157        | 6.98  | 113  | 1.0206          |
| 0.9685        | 7.97  | 129  | 0.9902          |
| 1.2886        | 8.96  | 145  | 0.9639          |
| 1.2373        | 9.88  | 160  | 0.9435          |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3