--- license: mit base_model: philschmid/bart-large-cnn-samsum tags: - generated_from_trainer model-index: - name: bart-original results: [] --- # bart-original This model is a fine-tuned version of [philschmid/bart-large-cnn-samsum](https://huggingface.co/philschmid/bart-large-cnn-samsum) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7047 | 0.99 | 16 | 1.2455 | | 1.1189 | 1.98 | 32 | 0.8783 | | 0.9025 | 2.97 | 48 | 0.7032 | | 0.661 | 3.95 | 64 | 0.6342 | | 0.7341 | 4.94 | 80 | 0.6271 | | 0.5526 | 5.99 | 97 | 0.6232 | | 0.4139 | 6.98 | 113 | 0.6405 | | 0.518 | 7.97 | 129 | 0.6887 | | 0.3311 | 8.96 | 145 | 0.7313 | | 0.196 | 9.88 | 160 | 0.7637 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3