akridge commited on
Commit
c4927ea
1 Parent(s): aa1f3a9

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ base_model:
5
+ - Ultralytics/YOLO11
6
+ tags:
7
+ - yolo
8
+ - yolo11
9
+ - yolo11n
10
+ - yolo11n-seg
11
+ - fish
12
+ datasets:
13
+ - akridge/MOUSS_fish_imagery_dataset_grayscale_small
14
+ ---
15
+
16
+ # Yolo11n-seg Fish Segmentation
17
+
18
+ ## Model Overview
19
+ This model was trained to detect and segment fish in underwater **Grayscale Imagery** using the YOLO11n-seg architecture, leveraging automatic training with the **Segment Anything Model (SAM)** for generating segmentation masks. The combination of detection and SAM-powered segmentation enhances the model's ability to outline fish boundaries.
20
+
21
+ - **Model Architecture**: YOLO11n-seg
22
+ - **Task**: Fish Segmentation
23
+ - **Footage Type**: Grayscale Underwater Footage
24
+ - **Classes**: 1 (Fish)
25
+
26
+ ## Auto-Training Process
27
+ The segmentation dataset was generated using an automated pipeline:
28
+ - **Detection Model**: A pre-trained YOLO model (https://huggingface.co/akridge/yolo11-fish-detector-grayscale/) was used to detect fish.
29
+ - **Segmentation**: The SAM model (`sam_b.pt`) was applied to generate precise segmentation masks around detected fish.
30
+ - **Output**: The dataset was saved at `/content/sam_dataset/`.
31
+
32
+ This automated process allowed for efficient mask generation without manual annotation, facilitating faster dataset creation.
33
+
34
+ ## Model Weights
35
+ Download the model weights [here](./yolo11n_fish_seg_trained.pt)
36
+
37
+ ## Intended Use
38
+ - Real-time fish detection and segmentation on grayscale underwater imagery.
39
+ - Post-processing of video or images for research purposes in marine biology and ecosystem monitoring.
40
+
41
+ ## Training Configuration
42
+ - **Dataset**: SAM asisted segmentation dataset.
43
+ - **Training/Validation Split**: 80% training, 20% validation.
44
+ - **Number of Epochs**: 50
45
+ - **Learning Rate**: 0.001
46
+ - **Batch Size**: 16
47
+ - **Image Size**: 640x640
48
+
49
+ ## Results and Metrics
50
+ The model was trained and evaluated on the generated segmentation dataset with the following results:
51
+
52
+ ### Confusion Matrix
53
+ ![Confusion Matrix](./train/results.png)
54
+
55
+ ## How to Use the Model
56
+ To use the trained YOLO11n-seg model for fish segmentation:
57
+
58
+ 1. **Load the Model**:
59
+ ```python
60
+ from ultralytics import YOLO
61
+
62
+ # Load YOLO11n-seg model
63
+ model = YOLO("yolo11n_fish_seg_trained.pt")
64
+
65
+ # Perform inference on an image
66
+ results = model("/content/test_image.jpg")
67
+ results.show()
68
+ ```