import numpy as np import ncnn import torch def test_inference(): torch.manual_seed(0) in0 = torch.rand(1, 3, 640, 640, dtype=torch.float) out = [] with ncnn.Net() as net: net.load_param("training_logs\train\weights\best_ncnn_model\model.ncnn.param") net.load_model("training_logs\train\weights\best_ncnn_model\model.ncnn.bin") with net.create_extractor() as ex: ex.input("in0", ncnn.Mat(in0.squeeze(0).numpy()).clone()) _, out0 = ex.extract("out0") out.append(torch.from_numpy(np.array(out0)).unsqueeze(0)) if len(out) == 1: return out[0] else: return tuple(out) if __name__ == "__main__": print(test_inference())