update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: openai/whisper-tiny
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- PolyAI/minds14
|
8 |
+
metrics:
|
9 |
+
- wer
|
10 |
+
model-index:
|
11 |
+
- name: minds14-finetuned
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Automatic Speech Recognition
|
15 |
+
type: automatic-speech-recognition
|
16 |
+
dataset:
|
17 |
+
name: PolyAI/minds14
|
18 |
+
type: PolyAI/minds14
|
19 |
+
config: en-US
|
20 |
+
split: train[450:]
|
21 |
+
args: en-US
|
22 |
+
metrics:
|
23 |
+
- name: Wer
|
24 |
+
type: wer
|
25 |
+
value: 0.35780382479950645
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# minds14-finetuned
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.6602
|
36 |
+
- Wer Ortho: 0.3412
|
37 |
+
- Wer: 0.3578
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 1e-05
|
57 |
+
- train_batch_size: 16
|
58 |
+
- eval_batch_size: 16
|
59 |
+
- seed: 42
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: constant_with_warmup
|
62 |
+
- lr_scheduler_warmup_steps: 50
|
63 |
+
- num_epochs: 10
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
|
69 |
+
| 4.8952 | 1.0 | 28 | 2.9786 | 0.4097 | 0.5373 |
|
70 |
+
| 2.0364 | 2.0 | 56 | 0.7791 | 0.3813 | 0.4275 |
|
71 |
+
| 0.5903 | 3.0 | 84 | 0.5917 | 0.3506 | 0.3917 |
|
72 |
+
| 0.3271 | 4.0 | 112 | 0.5681 | 0.3129 | 0.3381 |
|
73 |
+
| 0.2543 | 5.0 | 140 | 0.5713 | 0.3365 | 0.3652 |
|
74 |
+
| 0.1391 | 6.0 | 168 | 0.5896 | 0.3329 | 0.3621 |
|
75 |
+
| 0.0846 | 7.0 | 196 | 0.6083 | 0.3388 | 0.3658 |
|
76 |
+
| 0.0481 | 8.0 | 224 | 0.6209 | 0.3583 | 0.3738 |
|
77 |
+
| 0.0148 | 9.0 | 252 | 0.6625 | 0.3477 | 0.3689 |
|
78 |
+
| 0.0087 | 10.0 | 280 | 0.6602 | 0.3412 | 0.3578 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.31.0
|
84 |
+
- Pytorch 2.0.1+cu118
|
85 |
+
- Datasets 2.14.4
|
86 |
+
- Tokenizers 0.13.3
|