alexandreacff commited on
Commit
a066691
1 Parent(s): 61bfd0b

Model save

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/wav2vec2-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: wav2vec2-base-ft-fake-detection
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # wav2vec2-base-ft-fake-detection
17
+
18
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.2780
21
+ - Accuracy: 0.9907
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 3e-05
41
+ - train_batch_size: 32
42
+ - eval_batch_size: 16
43
+ - seed: 0
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 128
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - num_epochs: 5.0
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
55
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
56
+ | 0.4897 | 0.9851 | 33 | 1.3925 | 0.0 |
57
+ | 0.3905 | 2.0 | 67 | 0.6338 | 0.7953 |
58
+ | 0.3139 | 2.9851 | 100 | 0.4037 | 0.9710 |
59
+ | 0.2777 | 4.0 | 134 | 0.3067 | 0.9888 |
60
+ | 0.2455 | 4.9254 | 165 | 0.2780 | 0.9907 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.41.0.dev0
66
+ - Pytorch 2.2.1+cu121
67
+ - Datasets 2.19.1
68
+ - Tokenizers 0.19.1