--- license: mit base_model: alexdg19/bert_large_xsum_samsum tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: bert_large_xsum_samsum2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: test args: samsum metrics: - name: Rouge1 type: rouge value: 0.6112 --- # bert_large_xsum_samsum2 This model is a fine-tuned version of [alexdg19/bert_large_xsum_samsum](https://huggingface.co/alexdg19/bert_large_xsum_samsum) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.1949 - Rouge1: 0.6112 - Rouge2: 0.3855 - Rougel: 0.5301 - Rougelsum: 0.5296 - Gen Len: 30.5427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 41 | 0.9966 | 0.6323 | 0.416 | 0.5587 | 0.5598 | 26.9573 | | No log | 2.0 | 82 | 1.0976 | 0.6279 | 0.413 | 0.5569 | 0.5583 | 27.8171 | | No log | 3.0 | 123 | 1.1576 | 0.6236 | 0.4141 | 0.553 | 0.5537 | 29.5183 | | No log | 4.0 | 164 | 1.1998 | 0.6148 | 0.3948 | 0.5402 | 0.541 | 30.5061 | | No log | 5.0 | 205 | 1.1949 | 0.6112 | 0.3855 | 0.5301 | 0.5296 | 30.5427 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1