--- library_name: diffusers license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # FLUX.1 [dev] Modern Anime FP8 With Quanto ![eyecatch](eyecatch.jpg) FLUX.1 dev Modern Anime FP8 With Quanto is an anime model with 8-bit float by Quanto library. We can load this anime model < 15GB VRAM if enable_model_cpu_offload is True. otherwise, we can load this anime model < 20GB VRAM. We can run this model on RTX 4090 or NVIDIA L4. ## Usage - diffusers 1. Install quanto-optinum. ```bash pip install optimum-quanto ``` 2. Run the script: ```python # Reference 1: https://gist.github.com/AmericanPresidentJimmyCarter/873985638e1f3541ba8b00137e7dacd9 # Reference 2: https://huggingface.co/twodgirl/Flux-dev-optimum-quant-qfloat8 # Reference 2 by https://huggingface.co/twodgirl # Reference 3: https://huggingface.co/p1atdev/FLUX.1-schnell-t5-xxl-quanto prompt = "modern anime style, A close-up portrait of a young girl with green hair. Her hair is vibrant and shoulder-length, framing her face softly. She has large, expressive eyes that are slightly tilted upward, with a gentle and calm expression. Her facial features are delicate, with a small nose and soft lips. The background is simple, focusing attention on her face, with soft lighting that highlights her features. The overall style of the illustration is warm and inviting, with a soft color palette and a slightly dreamy atmosphere." enable_model_cpu_offload=True import torch from diffusers import FluxPipeline, FluxTransformer2DModel from optimum.quanto import QuantizedDiffusersModel, QuantizedTransformersModel from transformers import T5EncoderModel from huggingface_hub import snapshot_download snapshot_download(repo_id="alfredplpl/flux.1-dev-modern-anime-fp8",local_dir="./anime_fp8") class QuantizedT5EncoderModel(QuantizedTransformersModel): auto_class = T5EncoderModel T5EncoderModel.from_config = lambda c: T5EncoderModel(c).to(dtype=torch.float16) # lol class QuantizedFlux2DModel(QuantizedDiffusersModel): base_class = FluxTransformer2DModel pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", transformer=None, text_encoder_2=None, torch_dtype=torch.bfloat16) pipe.transformer=QuantizedFlux2DModel.from_pretrained("./anime_fp8/transformer")._wrapped pipe.text_encoder_2=QuantizedT5EncoderModel.from_pretrained("./anime_fp8/text_encoder_2")._wrapped pipe.vae=pipe.vae.to(torch.float32) # Option if(enable_model_cpu_offload): pipe.enable_model_cpu_offload() else: pipe.text_encoder_2=pipe.text_encoder_2.to("cuda") pipe.transformer=pipe.transformer.to("cuda") pipe=pipe.to("cuda") image = pipe( prompt, height=1024, width=1024, guidance_scale=3.5, num_inference_steps=50, max_sequence_length=512, generator=torch.Generator(device="cuda").manual_seed(0) ).images[0] image.save("modern-anime-fp8.png") ``` ## How to cast fp8 1. Install quanto-optinum. ```bash pip install optimum-quanto ``` 2. Run the script: ```python import torch from safetensors.torch import save_file, load_file from diffusers import FluxTransformer2DModel from optimum.quanto import freeze, qfloat8, quantize, QuantizedDiffusersModel class QuantizedFlux2DModel(QuantizedDiffusersModel): base_class = FluxTransformer2DModel transformer = FluxTransformer2DModel.from_single_file("modern-anime.safetensors", torch_dtype=torch.bfloat16) transformer = QuantizedFlux2DModel.quantize(transformer, weights=qfloat8) transformer.save_pretrained("transformer") ```