diff --git "a/README.md" "b/README.md" --- "a/README.md" +++ "b/README.md" @@ -1,3014 +1,3015 @@ ---- -tags: -- mteb -- sentence transformers -model-index: -- name: bge-small-en - results: - - task: - type: Classification - dataset: - type: mteb/amazon_counterfactual - name: MTEB AmazonCounterfactualClassification (en) - config: en - split: test - revision: e8379541af4e31359cca9fbcf4b00f2671dba205 - metrics: - - type: accuracy - value: 74.34328358208955 - - type: ap - value: 37.59947775195661 - - type: f1 - value: 68.548415491933 - - task: - type: Classification - dataset: - type: mteb/amazon_polarity - name: MTEB AmazonPolarityClassification - config: default - split: test - revision: e2d317d38cd51312af73b3d32a06d1a08b442046 - metrics: - - type: accuracy - value: 93.04527499999999 - - type: ap - value: 89.60696356772135 - - type: f1 - value: 93.03361469382438 - - task: - type: Classification - dataset: - type: mteb/amazon_reviews_multi - name: MTEB AmazonReviewsClassification (en) - config: en - split: test - revision: 1399c76144fd37290681b995c656ef9b2e06e26d - metrics: - - type: accuracy - value: 46.08 - - type: f1 - value: 45.66249835363254 - - task: - type: Retrieval - dataset: - type: arguana - name: MTEB ArguAna - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 35.205999999999996 - - type: map_at_10 - value: 50.782000000000004 - - type: map_at_100 - value: 51.547 - - type: map_at_1000 - value: 51.554 - - type: map_at_3 - value: 46.515 - - type: map_at_5 - value: 49.296 - - type: mrr_at_1 - value: 35.632999999999996 - - type: mrr_at_10 - value: 50.958999999999996 - - type: mrr_at_100 - value: 51.724000000000004 - - type: mrr_at_1000 - value: 51.731 - - type: mrr_at_3 - value: 46.669 - - type: mrr_at_5 - value: 49.439 - - type: ndcg_at_1 - value: 35.205999999999996 - - type: ndcg_at_10 - value: 58.835 - - type: ndcg_at_100 - value: 62.095 - - type: ndcg_at_1000 - value: 62.255 - - type: ndcg_at_3 - value: 50.255 - - type: ndcg_at_5 - value: 55.296 - - type: precision_at_1 - value: 35.205999999999996 - - type: precision_at_10 - value: 8.421 - - type: precision_at_100 - value: 0.984 - - type: precision_at_1000 - value: 0.1 - - type: precision_at_3 - value: 20.365 - - type: precision_at_5 - value: 14.680000000000001 - - type: recall_at_1 - value: 35.205999999999996 - - type: recall_at_10 - value: 84.211 - - type: recall_at_100 - value: 98.43499999999999 - - type: recall_at_1000 - value: 99.644 - - type: recall_at_3 - value: 61.095 - - type: recall_at_5 - value: 73.4 - - task: - type: Clustering - dataset: - type: mteb/arxiv-clustering-p2p - name: MTEB ArxivClusteringP2P - config: default - split: test - revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d - metrics: - - type: v_measure - value: 47.52644476278646 - - task: - type: Clustering - dataset: - type: mteb/arxiv-clustering-s2s - name: MTEB ArxivClusteringS2S - config: default - split: test - revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 - metrics: - - type: v_measure - value: 39.973045724188964 - - task: - type: Reranking - dataset: - type: mteb/askubuntudupquestions-reranking - name: MTEB AskUbuntuDupQuestions - config: default - split: test - revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 - metrics: - - type: map - value: 62.28285314871488 - - type: mrr - value: 74.52743701358659 - - task: - type: STS - dataset: - type: mteb/biosses-sts - name: MTEB BIOSSES - config: default - split: test - revision: d3fb88f8f02e40887cd149695127462bbcf29b4a - metrics: - - type: cos_sim_pearson - value: 80.09041909160327 - - type: cos_sim_spearman - value: 79.96266537706944 - - type: euclidean_pearson - value: 79.50774978162241 - - type: euclidean_spearman - value: 79.9144715078551 - - type: manhattan_pearson - value: 79.2062139879302 - - type: manhattan_spearman - value: 79.35000081468212 - - task: - type: Classification - dataset: - type: mteb/banking77 - name: MTEB Banking77Classification - config: default - split: test - revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 - metrics: - - type: accuracy - value: 85.31493506493506 - - type: f1 - value: 85.2704557977762 - - task: - type: Clustering - dataset: - type: mteb/biorxiv-clustering-p2p - name: MTEB BiorxivClusteringP2P - config: default - split: test - revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 - metrics: - - type: v_measure - value: 39.6837242810816 - - task: - type: Clustering - dataset: - type: mteb/biorxiv-clustering-s2s - name: MTEB BiorxivClusteringS2S - config: default - split: test - revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 - metrics: - - type: v_measure - value: 35.38881249555897 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackAndroidRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 27.884999999999998 - - type: map_at_10 - value: 39.574 - - type: map_at_100 - value: 40.993 - - type: map_at_1000 - value: 41.129 - - type: map_at_3 - value: 36.089 - - type: map_at_5 - value: 38.191 - - type: mrr_at_1 - value: 34.477999999999994 - - type: mrr_at_10 - value: 45.411 - - type: mrr_at_100 - value: 46.089999999999996 - - type: mrr_at_1000 - value: 46.147 - - type: mrr_at_3 - value: 42.346000000000004 - - type: mrr_at_5 - value: 44.292 - - type: ndcg_at_1 - value: 34.477999999999994 - - type: ndcg_at_10 - value: 46.123999999999995 - - type: ndcg_at_100 - value: 51.349999999999994 - - type: ndcg_at_1000 - value: 53.578 - - type: ndcg_at_3 - value: 40.824 - - type: ndcg_at_5 - value: 43.571 - - type: precision_at_1 - value: 34.477999999999994 - - type: precision_at_10 - value: 8.841000000000001 - - type: precision_at_100 - value: 1.4460000000000002 - - type: precision_at_1000 - value: 0.192 - - type: precision_at_3 - value: 19.742 - - type: precision_at_5 - value: 14.421000000000001 - - type: recall_at_1 - value: 27.884999999999998 - - type: recall_at_10 - value: 59.087 - - type: recall_at_100 - value: 80.609 - - type: recall_at_1000 - value: 95.054 - - type: recall_at_3 - value: 44.082 - - type: recall_at_5 - value: 51.593999999999994 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackEnglishRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 30.639 - - type: map_at_10 - value: 40.047 - - type: map_at_100 - value: 41.302 - - type: map_at_1000 - value: 41.425 - - type: map_at_3 - value: 37.406 - - type: map_at_5 - value: 38.934000000000005 - - type: mrr_at_1 - value: 37.707 - - type: mrr_at_10 - value: 46.082 - - type: mrr_at_100 - value: 46.745 - - type: mrr_at_1000 - value: 46.786 - - type: mrr_at_3 - value: 43.980999999999995 - - type: mrr_at_5 - value: 45.287 - - type: ndcg_at_1 - value: 37.707 - - type: ndcg_at_10 - value: 45.525 - - type: ndcg_at_100 - value: 49.976 - - type: ndcg_at_1000 - value: 51.94499999999999 - - type: ndcg_at_3 - value: 41.704 - - type: ndcg_at_5 - value: 43.596000000000004 - - type: precision_at_1 - value: 37.707 - - type: precision_at_10 - value: 8.465 - - type: precision_at_100 - value: 1.375 - - type: precision_at_1000 - value: 0.183 - - type: precision_at_3 - value: 19.979 - - type: precision_at_5 - value: 14.115 - - type: recall_at_1 - value: 30.639 - - type: recall_at_10 - value: 54.775 - - type: recall_at_100 - value: 73.678 - - type: recall_at_1000 - value: 86.142 - - type: recall_at_3 - value: 43.230000000000004 - - type: recall_at_5 - value: 48.622 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackGamingRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 38.038 - - type: map_at_10 - value: 49.922 - - type: map_at_100 - value: 51.032 - - type: map_at_1000 - value: 51.085 - - type: map_at_3 - value: 46.664 - - type: map_at_5 - value: 48.588 - - type: mrr_at_1 - value: 43.95 - - type: mrr_at_10 - value: 53.566 - - type: mrr_at_100 - value: 54.318999999999996 - - type: mrr_at_1000 - value: 54.348 - - type: mrr_at_3 - value: 51.066 - - type: mrr_at_5 - value: 52.649 - - type: ndcg_at_1 - value: 43.95 - - type: ndcg_at_10 - value: 55.676 - - type: ndcg_at_100 - value: 60.126000000000005 - - type: ndcg_at_1000 - value: 61.208 - - type: ndcg_at_3 - value: 50.20400000000001 - - type: ndcg_at_5 - value: 53.038 - - type: precision_at_1 - value: 43.95 - - type: precision_at_10 - value: 8.953 - - type: precision_at_100 - value: 1.2109999999999999 - - type: precision_at_1000 - value: 0.135 - - type: precision_at_3 - value: 22.256999999999998 - - type: precision_at_5 - value: 15.524 - - type: recall_at_1 - value: 38.038 - - type: recall_at_10 - value: 69.15 - - type: recall_at_100 - value: 88.31599999999999 - - type: recall_at_1000 - value: 95.993 - - type: recall_at_3 - value: 54.663 - - type: recall_at_5 - value: 61.373 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackGisRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 24.872 - - type: map_at_10 - value: 32.912 - - type: map_at_100 - value: 33.972 - - type: map_at_1000 - value: 34.046 - - type: map_at_3 - value: 30.361 - - type: map_at_5 - value: 31.704 - - type: mrr_at_1 - value: 26.779999999999998 - - type: mrr_at_10 - value: 34.812 - - type: mrr_at_100 - value: 35.754999999999995 - - type: mrr_at_1000 - value: 35.809000000000005 - - type: mrr_at_3 - value: 32.335 - - type: mrr_at_5 - value: 33.64 - - type: ndcg_at_1 - value: 26.779999999999998 - - type: ndcg_at_10 - value: 37.623 - - type: ndcg_at_100 - value: 42.924 - - type: ndcg_at_1000 - value: 44.856 - - type: ndcg_at_3 - value: 32.574 - - type: ndcg_at_5 - value: 34.842 - - type: precision_at_1 - value: 26.779999999999998 - - type: precision_at_10 - value: 5.729 - - type: precision_at_100 - value: 0.886 - - type: precision_at_1000 - value: 0.109 - - type: precision_at_3 - value: 13.559 - - type: precision_at_5 - value: 9.469 - - type: recall_at_1 - value: 24.872 - - type: recall_at_10 - value: 50.400999999999996 - - type: recall_at_100 - value: 74.954 - - type: recall_at_1000 - value: 89.56 - - type: recall_at_3 - value: 36.726 - - type: recall_at_5 - value: 42.138999999999996 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackMathematicaRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 16.803 - - type: map_at_10 - value: 24.348 - - type: map_at_100 - value: 25.56 - - type: map_at_1000 - value: 25.668000000000003 - - type: map_at_3 - value: 21.811 - - type: map_at_5 - value: 23.287 - - type: mrr_at_1 - value: 20.771 - - type: mrr_at_10 - value: 28.961 - - type: mrr_at_100 - value: 29.979 - - type: mrr_at_1000 - value: 30.046 - - type: mrr_at_3 - value: 26.555 - - type: mrr_at_5 - value: 28.060000000000002 - - type: ndcg_at_1 - value: 20.771 - - type: ndcg_at_10 - value: 29.335 - - type: ndcg_at_100 - value: 35.188 - - type: ndcg_at_1000 - value: 37.812 - - type: ndcg_at_3 - value: 24.83 - - type: ndcg_at_5 - value: 27.119 - - type: precision_at_1 - value: 20.771 - - type: precision_at_10 - value: 5.4350000000000005 - - type: precision_at_100 - value: 0.9480000000000001 - - type: precision_at_1000 - value: 0.13 - - type: precision_at_3 - value: 11.982 - - type: precision_at_5 - value: 8.831 - - type: recall_at_1 - value: 16.803 - - type: recall_at_10 - value: 40.039 - - type: recall_at_100 - value: 65.83200000000001 - - type: recall_at_1000 - value: 84.478 - - type: recall_at_3 - value: 27.682000000000002 - - type: recall_at_5 - value: 33.535 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackPhysicsRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 28.345 - - type: map_at_10 - value: 37.757000000000005 - - type: map_at_100 - value: 39.141 - - type: map_at_1000 - value: 39.262 - - type: map_at_3 - value: 35.183 - - type: map_at_5 - value: 36.592 - - type: mrr_at_1 - value: 34.649 - - type: mrr_at_10 - value: 43.586999999999996 - - type: mrr_at_100 - value: 44.481 - - type: mrr_at_1000 - value: 44.542 - - type: mrr_at_3 - value: 41.29 - - type: mrr_at_5 - value: 42.642 - - type: ndcg_at_1 - value: 34.649 - - type: ndcg_at_10 - value: 43.161 - - type: ndcg_at_100 - value: 48.734 - - type: ndcg_at_1000 - value: 51.046 - - type: ndcg_at_3 - value: 39.118 - - type: ndcg_at_5 - value: 41.022 - - type: precision_at_1 - value: 34.649 - - type: precision_at_10 - value: 7.603 - - type: precision_at_100 - value: 1.209 - - type: precision_at_1000 - value: 0.157 - - type: precision_at_3 - value: 18.319 - - type: precision_at_5 - value: 12.839 - - type: recall_at_1 - value: 28.345 - - type: recall_at_10 - value: 53.367 - - type: recall_at_100 - value: 76.453 - - type: recall_at_1000 - value: 91.82000000000001 - - type: recall_at_3 - value: 41.636 - - type: recall_at_5 - value: 46.760000000000005 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackProgrammersRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 22.419 - - type: map_at_10 - value: 31.716 - - type: map_at_100 - value: 33.152 - - type: map_at_1000 - value: 33.267 - - type: map_at_3 - value: 28.74 - - type: map_at_5 - value: 30.48 - - type: mrr_at_1 - value: 28.310999999999996 - - type: mrr_at_10 - value: 37.039 - - type: mrr_at_100 - value: 38.09 - - type: mrr_at_1000 - value: 38.145 - - type: mrr_at_3 - value: 34.437 - - type: mrr_at_5 - value: 36.024 - - type: ndcg_at_1 - value: 28.310999999999996 - - type: ndcg_at_10 - value: 37.41 - - type: ndcg_at_100 - value: 43.647999999999996 - - type: ndcg_at_1000 - value: 46.007 - - type: ndcg_at_3 - value: 32.509 - - type: ndcg_at_5 - value: 34.943999999999996 - - type: precision_at_1 - value: 28.310999999999996 - - type: precision_at_10 - value: 6.963 - - type: precision_at_100 - value: 1.1860000000000002 - - type: precision_at_1000 - value: 0.154 - - type: precision_at_3 - value: 15.867999999999999 - - type: precision_at_5 - value: 11.507000000000001 - - type: recall_at_1 - value: 22.419 - - type: recall_at_10 - value: 49.28 - - type: recall_at_100 - value: 75.802 - - type: recall_at_1000 - value: 92.032 - - type: recall_at_3 - value: 35.399 - - type: recall_at_5 - value: 42.027 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 24.669249999999998 - - type: map_at_10 - value: 33.332583333333325 - - type: map_at_100 - value: 34.557833333333335 - - type: map_at_1000 - value: 34.67141666666666 - - type: map_at_3 - value: 30.663166666666662 - - type: map_at_5 - value: 32.14883333333333 - - type: mrr_at_1 - value: 29.193833333333334 - - type: mrr_at_10 - value: 37.47625 - - type: mrr_at_100 - value: 38.3545 - - type: mrr_at_1000 - value: 38.413166666666676 - - type: mrr_at_3 - value: 35.06741666666667 - - type: mrr_at_5 - value: 36.450666666666656 - - type: ndcg_at_1 - value: 29.193833333333334 - - type: ndcg_at_10 - value: 38.505416666666676 - - type: ndcg_at_100 - value: 43.81125 - - type: ndcg_at_1000 - value: 46.09558333333333 - - type: ndcg_at_3 - value: 33.90916666666667 - - type: ndcg_at_5 - value: 36.07666666666666 - - type: precision_at_1 - value: 29.193833333333334 - - type: precision_at_10 - value: 6.7251666666666665 - - type: precision_at_100 - value: 1.1058333333333332 - - type: precision_at_1000 - value: 0.14833333333333332 - - type: precision_at_3 - value: 15.554166666666665 - - type: precision_at_5 - value: 11.079250000000002 - - type: recall_at_1 - value: 24.669249999999998 - - type: recall_at_10 - value: 49.75583333333332 - - type: recall_at_100 - value: 73.06908333333332 - - type: recall_at_1000 - value: 88.91316666666667 - - type: recall_at_3 - value: 36.913250000000005 - - type: recall_at_5 - value: 42.48641666666666 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackStatsRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 24.044999999999998 - - type: map_at_10 - value: 30.349999999999998 - - type: map_at_100 - value: 31.273 - - type: map_at_1000 - value: 31.362000000000002 - - type: map_at_3 - value: 28.508 - - type: map_at_5 - value: 29.369 - - type: mrr_at_1 - value: 26.994 - - type: mrr_at_10 - value: 33.12 - - type: mrr_at_100 - value: 33.904 - - type: mrr_at_1000 - value: 33.967000000000006 - - type: mrr_at_3 - value: 31.365 - - type: mrr_at_5 - value: 32.124 - - type: ndcg_at_1 - value: 26.994 - - type: ndcg_at_10 - value: 34.214 - - type: ndcg_at_100 - value: 38.681 - - type: ndcg_at_1000 - value: 40.926 - - type: ndcg_at_3 - value: 30.725 - - type: ndcg_at_5 - value: 31.967000000000002 - - type: precision_at_1 - value: 26.994 - - type: precision_at_10 - value: 5.215 - - type: precision_at_100 - value: 0.807 - - type: precision_at_1000 - value: 0.108 - - type: precision_at_3 - value: 12.986 - - type: precision_at_5 - value: 8.712 - - type: recall_at_1 - value: 24.044999999999998 - - type: recall_at_10 - value: 43.456 - - type: recall_at_100 - value: 63.675000000000004 - - type: recall_at_1000 - value: 80.05499999999999 - - type: recall_at_3 - value: 33.561 - - type: recall_at_5 - value: 36.767 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackTexRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 15.672 - - type: map_at_10 - value: 22.641 - - type: map_at_100 - value: 23.75 - - type: map_at_1000 - value: 23.877000000000002 - - type: map_at_3 - value: 20.219 - - type: map_at_5 - value: 21.648 - - type: mrr_at_1 - value: 18.823 - - type: mrr_at_10 - value: 26.101999999999997 - - type: mrr_at_100 - value: 27.038 - - type: mrr_at_1000 - value: 27.118 - - type: mrr_at_3 - value: 23.669 - - type: mrr_at_5 - value: 25.173000000000002 - - type: ndcg_at_1 - value: 18.823 - - type: ndcg_at_10 - value: 27.176000000000002 - - type: ndcg_at_100 - value: 32.42 - - type: ndcg_at_1000 - value: 35.413 - - type: ndcg_at_3 - value: 22.756999999999998 - - type: ndcg_at_5 - value: 25.032 - - type: precision_at_1 - value: 18.823 - - type: precision_at_10 - value: 5.034000000000001 - - type: precision_at_100 - value: 0.895 - - type: precision_at_1000 - value: 0.132 - - type: precision_at_3 - value: 10.771 - - type: precision_at_5 - value: 8.1 - - type: recall_at_1 - value: 15.672 - - type: recall_at_10 - value: 37.296 - - type: recall_at_100 - value: 60.863 - - type: recall_at_1000 - value: 82.234 - - type: recall_at_3 - value: 25.330000000000002 - - type: recall_at_5 - value: 30.964000000000002 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackUnixRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 24.633 - - type: map_at_10 - value: 32.858 - - type: map_at_100 - value: 34.038000000000004 - - type: map_at_1000 - value: 34.141 - - type: map_at_3 - value: 30.209000000000003 - - type: map_at_5 - value: 31.567 - - type: mrr_at_1 - value: 28.358 - - type: mrr_at_10 - value: 36.433 - - type: mrr_at_100 - value: 37.352000000000004 - - type: mrr_at_1000 - value: 37.41 - - type: mrr_at_3 - value: 34.033 - - type: mrr_at_5 - value: 35.246 - - type: ndcg_at_1 - value: 28.358 - - type: ndcg_at_10 - value: 37.973 - - type: ndcg_at_100 - value: 43.411 - - type: ndcg_at_1000 - value: 45.747 - - type: ndcg_at_3 - value: 32.934999999999995 - - type: ndcg_at_5 - value: 35.013 - - type: precision_at_1 - value: 28.358 - - type: precision_at_10 - value: 6.418 - - type: precision_at_100 - value: 1.02 - - type: precision_at_1000 - value: 0.133 - - type: precision_at_3 - value: 14.677000000000001 - - type: precision_at_5 - value: 10.335999999999999 - - type: recall_at_1 - value: 24.633 - - type: recall_at_10 - value: 50.048 - - type: recall_at_100 - value: 73.821 - - type: recall_at_1000 - value: 90.046 - - type: recall_at_3 - value: 36.284 - - type: recall_at_5 - value: 41.370000000000005 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackWebmastersRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 23.133 - - type: map_at_10 - value: 31.491999999999997 - - type: map_at_100 - value: 33.062000000000005 - - type: map_at_1000 - value: 33.256 - - type: map_at_3 - value: 28.886 - - type: map_at_5 - value: 30.262 - - type: mrr_at_1 - value: 28.063 - - type: mrr_at_10 - value: 36.144 - - type: mrr_at_100 - value: 37.14 - - type: mrr_at_1000 - value: 37.191 - - type: mrr_at_3 - value: 33.762 - - type: mrr_at_5 - value: 34.997 - - type: ndcg_at_1 - value: 28.063 - - type: ndcg_at_10 - value: 36.951 - - type: ndcg_at_100 - value: 43.287 - - type: ndcg_at_1000 - value: 45.777 - - type: ndcg_at_3 - value: 32.786 - - type: ndcg_at_5 - value: 34.65 - - type: precision_at_1 - value: 28.063 - - type: precision_at_10 - value: 7.055 - - type: precision_at_100 - value: 1.476 - - type: precision_at_1000 - value: 0.22899999999999998 - - type: precision_at_3 - value: 15.481 - - type: precision_at_5 - value: 11.186 - - type: recall_at_1 - value: 23.133 - - type: recall_at_10 - value: 47.285 - - type: recall_at_100 - value: 76.176 - - type: recall_at_1000 - value: 92.176 - - type: recall_at_3 - value: 35.223 - - type: recall_at_5 - value: 40.142 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackWordpressRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 19.547 - - type: map_at_10 - value: 26.374 - - type: map_at_100 - value: 27.419 - - type: map_at_1000 - value: 27.539 - - type: map_at_3 - value: 23.882 - - type: map_at_5 - value: 25.163999999999998 - - type: mrr_at_1 - value: 21.442 - - type: mrr_at_10 - value: 28.458 - - type: mrr_at_100 - value: 29.360999999999997 - - type: mrr_at_1000 - value: 29.448999999999998 - - type: mrr_at_3 - value: 25.97 - - type: mrr_at_5 - value: 27.273999999999997 - - type: ndcg_at_1 - value: 21.442 - - type: ndcg_at_10 - value: 30.897000000000002 - - type: ndcg_at_100 - value: 35.99 - - type: ndcg_at_1000 - value: 38.832 - - type: ndcg_at_3 - value: 25.944 - - type: ndcg_at_5 - value: 28.126 - - type: precision_at_1 - value: 21.442 - - type: precision_at_10 - value: 4.9910000000000005 - - type: precision_at_100 - value: 0.8109999999999999 - - type: precision_at_1000 - value: 0.11800000000000001 - - type: precision_at_3 - value: 11.029 - - type: precision_at_5 - value: 7.911 - - type: recall_at_1 - value: 19.547 - - type: recall_at_10 - value: 42.886 - - type: recall_at_100 - value: 66.64999999999999 - - type: recall_at_1000 - value: 87.368 - - type: recall_at_3 - value: 29.143 - - type: recall_at_5 - value: 34.544000000000004 - - task: - type: Retrieval - dataset: - type: climate-fever - name: MTEB ClimateFEVER - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 15.572 - - type: map_at_10 - value: 25.312 - - type: map_at_100 - value: 27.062 - - type: map_at_1000 - value: 27.253 - - type: map_at_3 - value: 21.601 - - type: map_at_5 - value: 23.473 - - type: mrr_at_1 - value: 34.984 - - type: mrr_at_10 - value: 46.406 - - type: mrr_at_100 - value: 47.179 - - type: mrr_at_1000 - value: 47.21 - - type: mrr_at_3 - value: 43.485 - - type: mrr_at_5 - value: 45.322 - - type: ndcg_at_1 - value: 34.984 - - type: ndcg_at_10 - value: 34.344 - - type: ndcg_at_100 - value: 41.015 - - type: ndcg_at_1000 - value: 44.366 - - type: ndcg_at_3 - value: 29.119 - - type: ndcg_at_5 - value: 30.825999999999997 - - type: precision_at_1 - value: 34.984 - - type: precision_at_10 - value: 10.358 - - type: precision_at_100 - value: 1.762 - - type: precision_at_1000 - value: 0.23900000000000002 - - type: precision_at_3 - value: 21.368000000000002 - - type: precision_at_5 - value: 15.948 - - type: recall_at_1 - value: 15.572 - - type: recall_at_10 - value: 39.367999999999995 - - type: recall_at_100 - value: 62.183 - - type: recall_at_1000 - value: 80.92200000000001 - - type: recall_at_3 - value: 26.131999999999998 - - type: recall_at_5 - value: 31.635999999999996 - - task: - type: Retrieval - dataset: - type: dbpedia-entity - name: MTEB DBPedia - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 8.848 - - type: map_at_10 - value: 19.25 - - type: map_at_100 - value: 27.193 - - type: map_at_1000 - value: 28.721999999999998 - - type: map_at_3 - value: 13.968 - - type: map_at_5 - value: 16.283 - - type: mrr_at_1 - value: 68.75 - - type: mrr_at_10 - value: 76.25 - - type: mrr_at_100 - value: 76.534 - - type: mrr_at_1000 - value: 76.53999999999999 - - type: mrr_at_3 - value: 74.667 - - type: mrr_at_5 - value: 75.86699999999999 - - type: ndcg_at_1 - value: 56.00000000000001 - - type: ndcg_at_10 - value: 41.426 - - type: ndcg_at_100 - value: 45.660000000000004 - - type: ndcg_at_1000 - value: 53.02 - - type: ndcg_at_3 - value: 46.581 - - type: ndcg_at_5 - value: 43.836999999999996 - - type: precision_at_1 - value: 68.75 - - type: precision_at_10 - value: 32.800000000000004 - - type: precision_at_100 - value: 10.440000000000001 - - type: precision_at_1000 - value: 1.9980000000000002 - - type: precision_at_3 - value: 49.667 - - type: precision_at_5 - value: 42.25 - - type: recall_at_1 - value: 8.848 - - type: recall_at_10 - value: 24.467 - - type: recall_at_100 - value: 51.344 - - type: recall_at_1000 - value: 75.235 - - type: recall_at_3 - value: 15.329 - - type: recall_at_5 - value: 18.892999999999997 - - task: - type: Classification - dataset: - type: mteb/emotion - name: MTEB EmotionClassification - config: default - split: test - revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 - metrics: - - type: accuracy - value: 48.95 - - type: f1 - value: 43.44563593360779 - - task: - type: Retrieval - dataset: - type: fever - name: MTEB FEVER - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 78.036 - - type: map_at_10 - value: 85.639 - - type: map_at_100 - value: 85.815 - - type: map_at_1000 - value: 85.829 - - type: map_at_3 - value: 84.795 - - type: map_at_5 - value: 85.336 - - type: mrr_at_1 - value: 84.353 - - type: mrr_at_10 - value: 90.582 - - type: mrr_at_100 - value: 90.617 - - type: mrr_at_1000 - value: 90.617 - - type: mrr_at_3 - value: 90.132 - - type: mrr_at_5 - value: 90.447 - - type: ndcg_at_1 - value: 84.353 - - type: ndcg_at_10 - value: 89.003 - - type: ndcg_at_100 - value: 89.60000000000001 - - type: ndcg_at_1000 - value: 89.836 - - type: ndcg_at_3 - value: 87.81400000000001 - - type: ndcg_at_5 - value: 88.478 - - type: precision_at_1 - value: 84.353 - - type: precision_at_10 - value: 10.482 - - type: precision_at_100 - value: 1.099 - - type: precision_at_1000 - value: 0.11399999999999999 - - type: precision_at_3 - value: 33.257999999999996 - - type: precision_at_5 - value: 20.465 - - type: recall_at_1 - value: 78.036 - - type: recall_at_10 - value: 94.517 - - type: recall_at_100 - value: 96.828 - - type: recall_at_1000 - value: 98.261 - - type: recall_at_3 - value: 91.12 - - type: recall_at_5 - value: 92.946 - - task: - type: Retrieval - dataset: - type: fiqa - name: MTEB FiQA2018 - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 20.191 - - type: map_at_10 - value: 32.369 - - type: map_at_100 - value: 34.123999999999995 - - type: map_at_1000 - value: 34.317 - - type: map_at_3 - value: 28.71 - - type: map_at_5 - value: 30.607 - - type: mrr_at_1 - value: 40.894999999999996 - - type: mrr_at_10 - value: 48.842 - - type: mrr_at_100 - value: 49.599 - - type: mrr_at_1000 - value: 49.647000000000006 - - type: mrr_at_3 - value: 46.785 - - type: mrr_at_5 - value: 47.672 - - type: ndcg_at_1 - value: 40.894999999999996 - - type: ndcg_at_10 - value: 39.872 - - type: ndcg_at_100 - value: 46.126 - - type: ndcg_at_1000 - value: 49.476 - - type: ndcg_at_3 - value: 37.153000000000006 - - type: ndcg_at_5 - value: 37.433 - - type: precision_at_1 - value: 40.894999999999996 - - type: precision_at_10 - value: 10.818 - - type: precision_at_100 - value: 1.73 - - type: precision_at_1000 - value: 0.231 - - type: precision_at_3 - value: 25.051000000000002 - - type: precision_at_5 - value: 17.531 - - type: recall_at_1 - value: 20.191 - - type: recall_at_10 - value: 45.768 - - type: recall_at_100 - value: 68.82000000000001 - - type: recall_at_1000 - value: 89.133 - - type: recall_at_3 - value: 33.296 - - type: recall_at_5 - value: 38.022 - - task: - type: Retrieval - dataset: - type: hotpotqa - name: MTEB HotpotQA - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 39.257 - - type: map_at_10 - value: 61.467000000000006 - - type: map_at_100 - value: 62.364 - - type: map_at_1000 - value: 62.424 - - type: map_at_3 - value: 58.228 - - type: map_at_5 - value: 60.283 - - type: mrr_at_1 - value: 78.515 - - type: mrr_at_10 - value: 84.191 - - type: mrr_at_100 - value: 84.378 - - type: mrr_at_1000 - value: 84.385 - - type: mrr_at_3 - value: 83.284 - - type: mrr_at_5 - value: 83.856 - - type: ndcg_at_1 - value: 78.515 - - type: ndcg_at_10 - value: 69.78999999999999 - - type: ndcg_at_100 - value: 72.886 - - type: ndcg_at_1000 - value: 74.015 - - type: ndcg_at_3 - value: 65.23 - - type: ndcg_at_5 - value: 67.80199999999999 - - type: precision_at_1 - value: 78.515 - - type: precision_at_10 - value: 14.519000000000002 - - type: precision_at_100 - value: 1.694 - - type: precision_at_1000 - value: 0.184 - - type: precision_at_3 - value: 41.702 - - type: precision_at_5 - value: 27.046999999999997 - - type: recall_at_1 - value: 39.257 - - type: recall_at_10 - value: 72.59299999999999 - - type: recall_at_100 - value: 84.679 - - type: recall_at_1000 - value: 92.12 - - type: recall_at_3 - value: 62.552 - - type: recall_at_5 - value: 67.616 - - task: - type: Classification - dataset: - type: mteb/imdb - name: MTEB ImdbClassification - config: default - split: test - revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 - metrics: - - type: accuracy - value: 91.5152 - - type: ap - value: 87.64584669595709 - - type: f1 - value: 91.50605576428437 - - task: - type: Retrieval - dataset: - type: msmarco - name: MTEB MSMARCO - config: default - split: dev - revision: None - metrics: - - type: map_at_1 - value: 21.926000000000002 - - type: map_at_10 - value: 34.049 - - type: map_at_100 - value: 35.213 - - type: map_at_1000 - value: 35.265 - - type: map_at_3 - value: 30.309 - - type: map_at_5 - value: 32.407000000000004 - - type: mrr_at_1 - value: 22.55 - - type: mrr_at_10 - value: 34.657 - - type: mrr_at_100 - value: 35.760999999999996 - - type: mrr_at_1000 - value: 35.807 - - type: mrr_at_3 - value: 30.989 - - type: mrr_at_5 - value: 33.039 - - type: ndcg_at_1 - value: 22.55 - - type: ndcg_at_10 - value: 40.842 - - type: ndcg_at_100 - value: 46.436 - - type: ndcg_at_1000 - value: 47.721999999999994 - - type: ndcg_at_3 - value: 33.209 - - type: ndcg_at_5 - value: 36.943 - - type: precision_at_1 - value: 22.55 - - type: precision_at_10 - value: 6.447 - - type: precision_at_100 - value: 0.9249999999999999 - - type: precision_at_1000 - value: 0.104 - - type: precision_at_3 - value: 14.136000000000001 - - type: precision_at_5 - value: 10.381 - - type: recall_at_1 - value: 21.926000000000002 - - type: recall_at_10 - value: 61.724999999999994 - - type: recall_at_100 - value: 87.604 - - type: recall_at_1000 - value: 97.421 - - type: recall_at_3 - value: 40.944 - - type: recall_at_5 - value: 49.915 - - task: - type: Classification - dataset: - type: mteb/mtop_domain - name: MTEB MTOPDomainClassification (en) - config: en - split: test - revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf - metrics: - - type: accuracy - value: 93.54765161878704 - - type: f1 - value: 93.3298945415573 - - task: - type: Classification - dataset: - type: mteb/mtop_intent - name: MTEB MTOPIntentClassification (en) - config: en - split: test - revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba - metrics: - - type: accuracy - value: 75.71591427268582 - - type: f1 - value: 59.32113870474471 - - task: - type: Classification - dataset: - type: mteb/amazon_massive_intent - name: MTEB MassiveIntentClassification (en) - config: en - split: test - revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 - metrics: - - type: accuracy - value: 75.83053127101547 - - type: f1 - value: 73.60757944876475 - - task: - type: Classification - dataset: - type: mteb/amazon_massive_scenario - name: MTEB MassiveScenarioClassification (en) - config: en - split: test - revision: 7d571f92784cd94a019292a1f45445077d0ef634 - metrics: - - type: accuracy - value: 78.72562205783457 - - type: f1 - value: 78.63761662505502 - - task: - type: Clustering - dataset: - type: mteb/medrxiv-clustering-p2p - name: MTEB MedrxivClusteringP2P - config: default - split: test - revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 - metrics: - - type: v_measure - value: 33.37935633767996 - - task: - type: Clustering - dataset: - type: mteb/medrxiv-clustering-s2s - name: MTEB MedrxivClusteringS2S - config: default - split: test - revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 - metrics: - - type: v_measure - value: 31.55270546130387 - - task: - type: Reranking - dataset: - type: mteb/mind_small - name: MTEB MindSmallReranking - config: default - split: test - revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 - metrics: - - type: map - value: 30.462692753143834 - - type: mrr - value: 31.497569753511563 - - task: - type: Retrieval - dataset: - type: nfcorpus - name: MTEB NFCorpus - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 5.646 - - type: map_at_10 - value: 12.498 - - type: map_at_100 - value: 15.486 - - type: map_at_1000 - value: 16.805999999999997 - - type: map_at_3 - value: 9.325 - - type: map_at_5 - value: 10.751 - - type: mrr_at_1 - value: 43.034 - - type: mrr_at_10 - value: 52.662 - - type: mrr_at_100 - value: 53.189 - - type: mrr_at_1000 - value: 53.25 - - type: mrr_at_3 - value: 50.929 - - type: mrr_at_5 - value: 51.92 - - type: ndcg_at_1 - value: 41.796 - - type: ndcg_at_10 - value: 33.477000000000004 - - type: ndcg_at_100 - value: 29.996000000000002 - - type: ndcg_at_1000 - value: 38.864 - - type: ndcg_at_3 - value: 38.940000000000005 - - type: ndcg_at_5 - value: 36.689 - - type: precision_at_1 - value: 43.034 - - type: precision_at_10 - value: 24.799 - - type: precision_at_100 - value: 7.432999999999999 - - type: precision_at_1000 - value: 1.9929999999999999 - - type: precision_at_3 - value: 36.842000000000006 - - type: precision_at_5 - value: 32.135999999999996 - - type: recall_at_1 - value: 5.646 - - type: recall_at_10 - value: 15.963 - - type: recall_at_100 - value: 29.492 - - type: recall_at_1000 - value: 61.711000000000006 - - type: recall_at_3 - value: 10.585 - - type: recall_at_5 - value: 12.753999999999998 - - task: - type: Retrieval - dataset: - type: nq - name: MTEB NQ - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 27.602 - - type: map_at_10 - value: 41.545 - - type: map_at_100 - value: 42.644999999999996 - - type: map_at_1000 - value: 42.685 - - type: map_at_3 - value: 37.261 - - type: map_at_5 - value: 39.706 - - type: mrr_at_1 - value: 31.141000000000002 - - type: mrr_at_10 - value: 44.139 - - type: mrr_at_100 - value: 44.997 - - type: mrr_at_1000 - value: 45.025999999999996 - - type: mrr_at_3 - value: 40.503 - - type: mrr_at_5 - value: 42.64 - - type: ndcg_at_1 - value: 31.141000000000002 - - type: ndcg_at_10 - value: 48.995 - - type: ndcg_at_100 - value: 53.788000000000004 - - type: ndcg_at_1000 - value: 54.730000000000004 - - type: ndcg_at_3 - value: 40.844 - - type: ndcg_at_5 - value: 44.955 - - type: precision_at_1 - value: 31.141000000000002 - - type: precision_at_10 - value: 8.233 - - type: precision_at_100 - value: 1.093 - - type: precision_at_1000 - value: 0.11800000000000001 - - type: precision_at_3 - value: 18.579 - - type: precision_at_5 - value: 13.533999999999999 - - type: recall_at_1 - value: 27.602 - - type: recall_at_10 - value: 69.216 - - type: recall_at_100 - value: 90.252 - - type: recall_at_1000 - value: 97.27 - - type: recall_at_3 - value: 47.987 - - type: recall_at_5 - value: 57.438 - - task: - type: Retrieval - dataset: - type: quora - name: MTEB QuoraRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 70.949 - - type: map_at_10 - value: 84.89999999999999 - - type: map_at_100 - value: 85.531 - - type: map_at_1000 - value: 85.548 - - type: map_at_3 - value: 82.027 - - type: map_at_5 - value: 83.853 - - type: mrr_at_1 - value: 81.69999999999999 - - type: mrr_at_10 - value: 87.813 - - type: mrr_at_100 - value: 87.917 - - type: mrr_at_1000 - value: 87.91799999999999 - - type: mrr_at_3 - value: 86.938 - - type: mrr_at_5 - value: 87.53999999999999 - - type: ndcg_at_1 - value: 81.75 - - type: ndcg_at_10 - value: 88.55499999999999 - - type: ndcg_at_100 - value: 89.765 - - type: ndcg_at_1000 - value: 89.871 - - type: ndcg_at_3 - value: 85.905 - - type: ndcg_at_5 - value: 87.41 - - type: precision_at_1 - value: 81.75 - - type: precision_at_10 - value: 13.403 - - type: precision_at_100 - value: 1.528 - - type: precision_at_1000 - value: 0.157 - - type: precision_at_3 - value: 37.597 - - type: precision_at_5 - value: 24.69 - - type: recall_at_1 - value: 70.949 - - type: recall_at_10 - value: 95.423 - - type: recall_at_100 - value: 99.509 - - type: recall_at_1000 - value: 99.982 - - type: recall_at_3 - value: 87.717 - - type: recall_at_5 - value: 92.032 - - task: - type: Clustering - dataset: - type: mteb/reddit-clustering - name: MTEB RedditClustering - config: default - split: test - revision: 24640382cdbf8abc73003fb0fa6d111a705499eb - metrics: - - type: v_measure - value: 51.76962893449579 - - task: - type: Clustering - dataset: - type: mteb/reddit-clustering-p2p - name: MTEB RedditClusteringP2P - config: default - split: test - revision: 282350215ef01743dc01b456c7f5241fa8937f16 - metrics: - - type: v_measure - value: 62.32897690686379 - - task: - type: Retrieval - dataset: - type: scidocs - name: MTEB SCIDOCS - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 4.478 - - type: map_at_10 - value: 11.994 - - type: map_at_100 - value: 13.977 - - type: map_at_1000 - value: 14.295 - - type: map_at_3 - value: 8.408999999999999 - - type: map_at_5 - value: 10.024 - - type: mrr_at_1 - value: 22.1 - - type: mrr_at_10 - value: 33.526 - - type: mrr_at_100 - value: 34.577000000000005 - - type: mrr_at_1000 - value: 34.632000000000005 - - type: mrr_at_3 - value: 30.217 - - type: mrr_at_5 - value: 31.962000000000003 - - type: ndcg_at_1 - value: 22.1 - - type: ndcg_at_10 - value: 20.191 - - type: ndcg_at_100 - value: 27.954 - - type: ndcg_at_1000 - value: 33.491 - - type: ndcg_at_3 - value: 18.787000000000003 - - type: ndcg_at_5 - value: 16.378999999999998 - - type: precision_at_1 - value: 22.1 - - type: precision_at_10 - value: 10.69 - - type: precision_at_100 - value: 2.1919999999999997 - - type: precision_at_1000 - value: 0.35200000000000004 - - type: precision_at_3 - value: 17.732999999999997 - - type: precision_at_5 - value: 14.499999999999998 - - type: recall_at_1 - value: 4.478 - - type: recall_at_10 - value: 21.657 - - type: recall_at_100 - value: 44.54 - - type: recall_at_1000 - value: 71.542 - - type: recall_at_3 - value: 10.778 - - type: recall_at_5 - value: 14.687 - - task: - type: STS - dataset: - type: mteb/sickr-sts - name: MTEB SICK-R - config: default - split: test - revision: a6ea5a8cab320b040a23452cc28066d9beae2cee - metrics: - - type: cos_sim_pearson - value: 82.82325259156718 - - type: cos_sim_spearman - value: 79.2463589100662 - - type: euclidean_pearson - value: 80.48318380496771 - - type: euclidean_spearman - value: 79.34451935199979 - - type: manhattan_pearson - value: 80.39041824178759 - - type: manhattan_spearman - value: 79.23002892700211 - - task: - type: STS - dataset: - type: mteb/sts12-sts - name: MTEB STS12 - config: default - split: test - revision: a0d554a64d88156834ff5ae9920b964011b16384 - metrics: - - type: cos_sim_pearson - value: 85.74130231431258 - - type: cos_sim_spearman - value: 78.36856568042397 - - type: euclidean_pearson - value: 82.48301631890303 - - type: euclidean_spearman - value: 78.28376980722732 - - type: manhattan_pearson - value: 82.43552075450525 - - type: manhattan_spearman - value: 78.22702443947126 - - task: - type: STS - dataset: - type: mteb/sts13-sts - name: MTEB STS13 - config: default - split: test - revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca - metrics: - - type: cos_sim_pearson - value: 79.96138619461459 - - type: cos_sim_spearman - value: 81.85436343502379 - - type: euclidean_pearson - value: 81.82895226665367 - - type: euclidean_spearman - value: 82.22707349602916 - - type: manhattan_pearson - value: 81.66303369445873 - - type: manhattan_spearman - value: 82.05030197179455 - - task: - type: STS - dataset: - type: mteb/sts14-sts - name: MTEB STS14 - config: default - split: test - revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 - metrics: - - type: cos_sim_pearson - value: 80.05481244198648 - - type: cos_sim_spearman - value: 80.85052504637808 - - type: euclidean_pearson - value: 80.86728419744497 - - type: euclidean_spearman - value: 81.033786401512 - - type: manhattan_pearson - value: 80.90107531061103 - - type: manhattan_spearman - value: 81.11374116827795 - - task: - type: STS - dataset: - type: mteb/sts15-sts - name: MTEB STS15 - config: default - split: test - revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 - metrics: - - type: cos_sim_pearson - value: 84.615220756399 - - type: cos_sim_spearman - value: 86.46858500002092 - - type: euclidean_pearson - value: 86.08307800247586 - - type: euclidean_spearman - value: 86.72691443870013 - - type: manhattan_pearson - value: 85.96155594487269 - - type: manhattan_spearman - value: 86.605909505275 - - task: - type: STS - dataset: - type: mteb/sts16-sts - name: MTEB STS16 - config: default - split: test - revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 - metrics: - - type: cos_sim_pearson - value: 82.14363913634436 - - type: cos_sim_spearman - value: 84.48430226487102 - - type: euclidean_pearson - value: 83.75303424801902 - - type: euclidean_spearman - value: 84.56762380734538 - - type: manhattan_pearson - value: 83.6135447165928 - - type: manhattan_spearman - value: 84.39898212616731 - - task: - type: STS - dataset: - type: mteb/sts17-crosslingual-sts - name: MTEB STS17 (en-en) - config: en-en - split: test - revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d - metrics: - - type: cos_sim_pearson - value: 85.09909252554525 - - type: cos_sim_spearman - value: 85.70951402743276 - - type: euclidean_pearson - value: 87.1991936239908 - - type: euclidean_spearman - value: 86.07745840612071 - - type: manhattan_pearson - value: 87.25039137549952 - - type: manhattan_spearman - value: 85.99938746659761 - - task: - type: STS - dataset: - type: mteb/sts22-crosslingual-sts - name: MTEB STS22 (en) - config: en - split: test - revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 - metrics: - - type: cos_sim_pearson - value: 63.529332093413615 - - type: cos_sim_spearman - value: 65.38177340147439 - - type: euclidean_pearson - value: 66.35278011412136 - - type: euclidean_spearman - value: 65.47147267032997 - - type: manhattan_pearson - value: 66.71804682408693 - - type: manhattan_spearman - value: 65.67406521423597 - - task: - type: STS - dataset: - type: mteb/stsbenchmark-sts - name: MTEB STSBenchmark - config: default - split: test - revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 - metrics: - - type: cos_sim_pearson - value: 82.45802942885662 - - type: cos_sim_spearman - value: 84.8853341842566 - - type: euclidean_pearson - value: 84.60915021096707 - - type: euclidean_spearman - value: 85.11181242913666 - - type: manhattan_pearson - value: 84.38600521210364 - - type: manhattan_spearman - value: 84.89045417981723 - - task: - type: Reranking - dataset: - type: mteb/scidocs-reranking - name: MTEB SciDocsRR - config: default - split: test - revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab - metrics: - - type: map - value: 85.92793380635129 - - type: mrr - value: 95.85834191226348 - - task: - type: Retrieval - dataset: - type: scifact - name: MTEB SciFact - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 55.74400000000001 - - type: map_at_10 - value: 65.455 - - type: map_at_100 - value: 66.106 - - type: map_at_1000 - value: 66.129 - - type: map_at_3 - value: 62.719 - - type: map_at_5 - value: 64.441 - - type: mrr_at_1 - value: 58.667 - - type: mrr_at_10 - value: 66.776 - - type: mrr_at_100 - value: 67.363 - - type: mrr_at_1000 - value: 67.384 - - type: mrr_at_3 - value: 64.889 - - type: mrr_at_5 - value: 66.122 - - type: ndcg_at_1 - value: 58.667 - - type: ndcg_at_10 - value: 69.904 - - type: ndcg_at_100 - value: 72.807 - - type: ndcg_at_1000 - value: 73.423 - - type: ndcg_at_3 - value: 65.405 - - type: ndcg_at_5 - value: 67.86999999999999 - - type: precision_at_1 - value: 58.667 - - type: precision_at_10 - value: 9.3 - - type: precision_at_100 - value: 1.08 - - type: precision_at_1000 - value: 0.11299999999999999 - - type: precision_at_3 - value: 25.444 - - type: precision_at_5 - value: 17 - - type: recall_at_1 - value: 55.74400000000001 - - type: recall_at_10 - value: 82.122 - - type: recall_at_100 - value: 95.167 - - type: recall_at_1000 - value: 100 - - type: recall_at_3 - value: 70.14399999999999 - - type: recall_at_5 - value: 76.417 - - task: - type: PairClassification - dataset: - type: mteb/sprintduplicatequestions-pairclassification - name: MTEB SprintDuplicateQuestions - config: default - split: test - revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 - metrics: - - type: cos_sim_accuracy - value: 99.86534653465347 - - type: cos_sim_ap - value: 96.54142419791388 - - type: cos_sim_f1 - value: 93.07535641547861 - - type: cos_sim_precision - value: 94.81327800829875 - - type: cos_sim_recall - value: 91.4 - - type: dot_accuracy - value: 99.86435643564356 - - type: dot_ap - value: 96.53682260449868 - - type: dot_f1 - value: 92.98515104966718 - - type: dot_precision - value: 95.27806925498426 - - type: dot_recall - value: 90.8 - - type: euclidean_accuracy - value: 99.86336633663366 - - type: euclidean_ap - value: 96.5228676185697 - - type: euclidean_f1 - value: 92.9735234215886 - - type: euclidean_precision - value: 94.70954356846472 - - type: euclidean_recall - value: 91.3 - - type: manhattan_accuracy - value: 99.85841584158416 - - type: manhattan_ap - value: 96.50392760934032 - - type: manhattan_f1 - value: 92.84642321160581 - - type: manhattan_precision - value: 92.8928928928929 - - type: manhattan_recall - value: 92.80000000000001 - - type: max_accuracy - value: 99.86534653465347 - - type: max_ap - value: 96.54142419791388 - - type: max_f1 - value: 93.07535641547861 - - task: - type: Clustering - dataset: - type: mteb/stackexchange-clustering - name: MTEB StackExchangeClustering - config: default - split: test - revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 - metrics: - - type: v_measure - value: 61.08285408766616 - - task: - type: Clustering - dataset: - type: mteb/stackexchange-clustering-p2p - name: MTEB StackExchangeClusteringP2P - config: default - split: test - revision: 815ca46b2622cec33ccafc3735d572c266efdb44 - metrics: - - type: v_measure - value: 35.640675309010604 - - task: - type: Reranking - dataset: - type: mteb/stackoverflowdupquestions-reranking - name: MTEB StackOverflowDupQuestions - config: default - split: test - revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 - metrics: - - type: map - value: 53.20333913710715 - - type: mrr - value: 54.088813555725324 - - task: - type: Summarization - dataset: - type: mteb/summeval - name: MTEB SummEval - config: default - split: test - revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c - metrics: - - type: cos_sim_pearson - value: 30.79465221925075 - - type: cos_sim_spearman - value: 30.530816059163634 - - type: dot_pearson - value: 31.364837244718043 - - type: dot_spearman - value: 30.79726823684003 - - task: - type: Retrieval - dataset: - type: trec-covid - name: MTEB TRECCOVID - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 0.22599999999999998 - - type: map_at_10 - value: 1.735 - - type: map_at_100 - value: 8.978 - - type: map_at_1000 - value: 20.851 - - type: map_at_3 - value: 0.613 - - type: map_at_5 - value: 0.964 - - type: mrr_at_1 - value: 88 - - type: mrr_at_10 - value: 92.867 - - type: mrr_at_100 - value: 92.867 - - type: mrr_at_1000 - value: 92.867 - - type: mrr_at_3 - value: 92.667 - - type: mrr_at_5 - value: 92.667 - - type: ndcg_at_1 - value: 82 - - type: ndcg_at_10 - value: 73.164 - - type: ndcg_at_100 - value: 51.878 - - type: ndcg_at_1000 - value: 44.864 - - type: ndcg_at_3 - value: 79.184 - - type: ndcg_at_5 - value: 76.39 - - type: precision_at_1 - value: 88 - - type: precision_at_10 - value: 76.2 - - type: precision_at_100 - value: 52.459999999999994 - - type: precision_at_1000 - value: 19.692 - - type: precision_at_3 - value: 82.667 - - type: precision_at_5 - value: 80 - - type: recall_at_1 - value: 0.22599999999999998 - - type: recall_at_10 - value: 1.942 - - type: recall_at_100 - value: 12.342 - - type: recall_at_1000 - value: 41.42 - - type: recall_at_3 - value: 0.637 - - type: recall_at_5 - value: 1.034 - - task: - type: Retrieval - dataset: - type: webis-touche2020 - name: MTEB Touche2020 - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 3.567 - - type: map_at_10 - value: 13.116 - - type: map_at_100 - value: 19.39 - - type: map_at_1000 - value: 20.988 - - type: map_at_3 - value: 7.109 - - type: map_at_5 - value: 9.950000000000001 - - type: mrr_at_1 - value: 42.857 - - type: mrr_at_10 - value: 57.404999999999994 - - type: mrr_at_100 - value: 58.021 - - type: mrr_at_1000 - value: 58.021 - - type: mrr_at_3 - value: 54.762 - - type: mrr_at_5 - value: 56.19 - - type: ndcg_at_1 - value: 38.775999999999996 - - type: ndcg_at_10 - value: 30.359 - - type: ndcg_at_100 - value: 41.284 - - type: ndcg_at_1000 - value: 52.30200000000001 - - type: ndcg_at_3 - value: 36.744 - - type: ndcg_at_5 - value: 34.326 - - type: precision_at_1 - value: 42.857 - - type: precision_at_10 - value: 26.122 - - type: precision_at_100 - value: 8.082 - - type: precision_at_1000 - value: 1.559 - - type: precision_at_3 - value: 40.136 - - type: precision_at_5 - value: 35.510000000000005 - - type: recall_at_1 - value: 3.567 - - type: recall_at_10 - value: 19.045 - - type: recall_at_100 - value: 49.979 - - type: recall_at_1000 - value: 84.206 - - type: recall_at_3 - value: 8.52 - - type: recall_at_5 - value: 13.103000000000002 - - task: - type: Classification - dataset: - type: mteb/toxic_conversations_50k - name: MTEB ToxicConversationsClassification - config: default - split: test - revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c - metrics: - - type: accuracy - value: 68.8394 - - type: ap - value: 13.454399712443099 - - type: f1 - value: 53.04963076364322 - - task: - type: Classification - dataset: - type: mteb/tweet_sentiment_extraction - name: MTEB TweetSentimentExtractionClassification - config: default - split: test - revision: d604517c81ca91fe16a244d1248fc021f9ecee7a - metrics: - - type: accuracy - value: 60.546123372948514 - - type: f1 - value: 60.86952793277713 - - task: - type: Clustering - dataset: - type: mteb/twentynewsgroups-clustering - name: MTEB TwentyNewsgroupsClustering - config: default - split: test - revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 - metrics: - - type: v_measure - value: 49.10042955060234 - - task: - type: PairClassification - dataset: - type: mteb/twittersemeval2015-pairclassification - name: MTEB TwitterSemEval2015 - config: default - split: test - revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 - metrics: - - type: cos_sim_accuracy - value: 85.03308100375514 - - type: cos_sim_ap - value: 71.08284605869684 - - type: cos_sim_f1 - value: 65.42539436255494 - - type: cos_sim_precision - value: 64.14807302231237 - - type: cos_sim_recall - value: 66.75461741424802 - - type: dot_accuracy - value: 84.68736961316088 - - type: dot_ap - value: 69.20524036530992 - - type: dot_f1 - value: 63.54893953365829 - - type: dot_precision - value: 63.45698500394633 - - type: dot_recall - value: 63.641160949868066 - - type: euclidean_accuracy - value: 85.07480479227513 - - type: euclidean_ap - value: 71.14592761009864 - - type: euclidean_f1 - value: 65.43814432989691 - - type: euclidean_precision - value: 63.95465994962216 - - type: euclidean_recall - value: 66.99208443271768 - - type: manhattan_accuracy - value: 85.06288370984085 - - type: manhattan_ap - value: 71.07289742593868 - - type: manhattan_f1 - value: 65.37585421412301 - - type: manhattan_precision - value: 62.816147859922175 - - type: manhattan_recall - value: 68.15303430079156 - - type: max_accuracy - value: 85.07480479227513 - - type: max_ap - value: 71.14592761009864 - - type: max_f1 - value: 65.43814432989691 - - task: - type: PairClassification - dataset: - type: mteb/twitterurlcorpus-pairclassification - name: MTEB TwitterURLCorpus - config: default - split: test - revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf - metrics: - - type: cos_sim_accuracy - value: 87.79058485659952 - - type: cos_sim_ap - value: 83.7183187008759 - - type: cos_sim_f1 - value: 75.86921142180798 - - type: cos_sim_precision - value: 73.00683371298405 - - type: cos_sim_recall - value: 78.96519864490298 - - type: dot_accuracy - value: 87.0085768618776 - - type: dot_ap - value: 81.87467488474279 - - type: dot_f1 - value: 74.04188363990559 - - type: dot_precision - value: 72.10507114191901 - - type: dot_recall - value: 76.08561749307053 - - type: euclidean_accuracy - value: 87.8332751193387 - - type: euclidean_ap - value: 83.83585648120315 - - type: euclidean_f1 - value: 76.02582177042369 - - type: euclidean_precision - value: 73.36388371759989 - - type: euclidean_recall - value: 78.88820449645827 - - type: manhattan_accuracy - value: 87.87208444910156 - - type: manhattan_ap - value: 83.8101950642973 - - type: manhattan_f1 - value: 75.90454195535027 - - type: manhattan_precision - value: 72.44419564761039 - - type: manhattan_recall - value: 79.71204188481676 - - type: max_accuracy - value: 87.87208444910156 - - type: max_ap - value: 83.83585648120315 - - type: max_f1 - value: 76.02582177042369 -license: mit -language: -- en ---- - - -**Recommend switching to newest [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5), which has more reasonable similarity distribution and same method of usage.** - -

FlagEmbedding

- - -

-

- Model List | - FAQ | - Usage | - Evaluation | - Train | - Citation | - License -

-

- -More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding). - - -[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md) - -FlagEmbedding focus on retrieval-augmented LLMs, consisting of following projects currently: - -- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail) -- **Dense Retrieval**: [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding), [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) -- **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) - - -## News - -- 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire: -- 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf) -- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released -- 09/15/2023: The [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released -- 09/12/2023: New models: - - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models. - - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction. - - -
- More - - -- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning. -- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard). -- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗** -- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada: -- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset. - -
- - -## Model List - -`bge` is short for `BAAI general embedding`. - -| Model | Language | | Description | query instruction for retrieval [1] | -|:-------------------------------|:--------:| :--------:| :--------:|:--------:| -| [LM-Cocktail](https://huggingface.co/Shitao) | English | | fine-tuned models (Llama and BGE) which can be used to reproduce the results of LM-Cocktail | | -| [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) | -| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | -| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | -| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | -| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | -| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | -| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | -| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | -| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | -| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | -| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` | -| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` | -| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` | -| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` | -| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` | - - -[1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages. - -[2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models. -For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results. - -All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI. -If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models . - - -## Frequently asked questions - -
- 1. How to fine-tune bge embedding model? - - -Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model. -Some suggestions: -- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance. -- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity. -- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker. - - -
- -
- 2. The similarity score between two dissimilar sentences is higher than 0.5 - - -**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.** - -Since we finetune the models by contrastive learning with a temperature of 0.01, -the similarity distribution of the current BGE model is about in the interval \[0.6, 1\]. -So a similarity score greater than 0.5 does not indicate that the two sentences are similar. - -For downstream tasks, such as passage retrieval or semantic similarity, -**what matters is the relative order of the scores, not the absolute value.** -If you need to filter similar sentences based on a similarity threshold, -please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9). - -
- -
- 3. When does the query instruction need to be used - - - -For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction. -No instruction only has a slight degradation in retrieval performance compared with using instruction. -So you can generate embedding without instruction in all cases for convenience. - -For a retrieval task that uses short queries to find long related documents, -it is recommended to add instructions for these short queries. -**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.** -In all cases, the documents/passages do not need to add the instruction. - -
- - -## Usage - -### Usage for Embedding Model - -Here are some examples for using `bge` models with -[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers). - -#### Using FlagEmbedding -``` -pip install -U FlagEmbedding -``` -If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding. - -```python -from FlagEmbedding import FlagModel -sentences_1 = ["样例数据-1", "样例数据-2"] -sentences_2 = ["样例数据-3", "样例数据-4"] -model = FlagModel('BAAI/bge-large-zh-v1.5', - query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", - use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation -embeddings_1 = model.encode(sentences_1) -embeddings_2 = model.encode(sentences_2) -similarity = embeddings_1 @ embeddings_2.T -print(similarity) - -# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query -# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction -queries = ['query_1', 'query_2'] -passages = ["样例文档-1", "样例文档-2"] -q_embeddings = model.encode_queries(queries) -p_embeddings = model.encode(passages) -scores = q_embeddings @ p_embeddings.T -``` -For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). - -By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. -You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable. - - -#### Using Sentence-Transformers - -You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net): - -``` -pip install -U sentence-transformers -``` -```python -from sentence_transformers import SentenceTransformer -sentences_1 = ["样例数据-1", "样例数据-2"] -sentences_2 = ["样例数据-3", "样例数据-4"] -model = SentenceTransformer('BAAI/bge-large-zh-v1.5') -embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) -embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) -similarity = embeddings_1 @ embeddings_2.T -print(similarity) -``` -For s2p(short query to long passage) retrieval task, -each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). -But the instruction is not needed for passages. -```python -from sentence_transformers import SentenceTransformer -queries = ['query_1', 'query_2'] -passages = ["样例文档-1", "样例文档-2"] -instruction = "为这个句子生成表示以用于检索相关文章:" - -model = SentenceTransformer('BAAI/bge-large-zh-v1.5') -q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True) -p_embeddings = model.encode(passages, normalize_embeddings=True) -scores = q_embeddings @ p_embeddings.T -``` - -#### Using Langchain - -You can use `bge` in langchain like this: -```python -from langchain.embeddings import HuggingFaceBgeEmbeddings -model_name = "BAAI/bge-large-en-v1.5" -model_kwargs = {'device': 'cuda'} -encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity -model = HuggingFaceBgeEmbeddings( - model_name=model_name, - model_kwargs=model_kwargs, - encode_kwargs=encode_kwargs, - query_instruction="为这个句子生成表示以用于检索相关文章:" -) -model.query_instruction = "为这个句子生成表示以用于检索相关文章:" -``` - - -#### Using HuggingFace Transformers - -With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding. - -```python -from transformers import AutoTokenizer, AutoModel -import torch -# Sentences we want sentence embeddings for -sentences = ["样例数据-1", "样例数据-2"] - -# Load model from HuggingFace Hub -tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5') -model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5') -model.eval() - -# Tokenize sentences -encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') -# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages) -# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') - -# Compute token embeddings -with torch.no_grad(): - model_output = model(**encoded_input) - # Perform pooling. In this case, cls pooling. - sentence_embeddings = model_output[0][:, 0] -# normalize embeddings -sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) -print("Sentence embeddings:", sentence_embeddings) -``` - -### Usage for Reranker - -Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. -You can get a relevance score by inputting query and passage to the reranker. -The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range. - - -#### Using FlagEmbedding -``` -pip install -U FlagEmbedding -``` - -Get relevance scores (higher scores indicate more relevance): -```python -from FlagEmbedding import FlagReranker -reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation - -score = reranker.compute_score(['query', 'passage']) -print(score) - -scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]) -print(scores) -``` - - -#### Using Huggingface transformers - -```python -import torch -from transformers import AutoModelForSequenceClassification, AutoTokenizer - -tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large') -model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large') -model.eval() - -pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] -with torch.no_grad(): - inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) - scores = model(**inputs, return_dict=True).logits.view(-1, ).float() - print(scores) -``` - -## Evaluation - -`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!** -For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). - -- **MTEB**: - -| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) | -|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| -| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 | -| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 | -| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 | -| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 | -| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | -| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 | -| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 | -| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 | -| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 | -| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 | -| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 | -| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 | -| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 | -| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 | -| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 | -| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 | -| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 | - - - -- **C-MTEB**: -We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks. -Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction. - -| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | -|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| -| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 | -| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 | -| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 | -| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 | -| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 | -| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 | -| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 | -| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 | -| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 | -| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 | -| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 | -| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 | -| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 | -| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 | -| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 | -| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 | - - -- **Reranking**: -See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script. - -| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg | -|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| -| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 | -| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 | -| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 | -| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 | -| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 | -| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 | -| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 | -| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 | -| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 | -| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 | - -\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks - -## Train - -### BAAI Embedding - -We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning. -**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).** -We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain). -Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned. -More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md). - - - -### BGE Reranker - -Cross-encoder will perform full-attention over the input pair, -which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model. -Therefore, it can be used to re-rank the top-k documents returned by embedding model. -We train the cross-encoder on a multilingual pair data, -The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker). -More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) - - - - -## Citation - -If you find this repository useful, please consider giving a star :star: and citation - -``` -@misc{bge_embedding, - title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, - author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff}, - year={2023}, - eprint={2309.07597}, - archivePrefix={arXiv}, - primaryClass={cs.CL} -} -``` - -## License -FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge. - +--- +tags: +- mteb +- sentence transformers +model-index: +- name: bge-small-en + results: + - task: + type: Classification + dataset: + type: mteb/amazon_counterfactual + name: MTEB AmazonCounterfactualClassification (en) + config: en + split: test + revision: e8379541af4e31359cca9fbcf4b00f2671dba205 + metrics: + - type: accuracy + value: 74.34328358208955 + - type: ap + value: 37.59947775195661 + - type: f1 + value: 68.548415491933 + - task: + type: Classification + dataset: + type: mteb/amazon_polarity + name: MTEB AmazonPolarityClassification + config: default + split: test + revision: e2d317d38cd51312af73b3d32a06d1a08b442046 + metrics: + - type: accuracy + value: 93.04527499999999 + - type: ap + value: 89.60696356772135 + - type: f1 + value: 93.03361469382438 + - task: + type: Classification + dataset: + type: mteb/amazon_reviews_multi + name: MTEB AmazonReviewsClassification (en) + config: en + split: test + revision: 1399c76144fd37290681b995c656ef9b2e06e26d + metrics: + - type: accuracy + value: 46.08 + - type: f1 + value: 45.66249835363254 + - task: + type: Retrieval + dataset: + type: arguana + name: MTEB ArguAna + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 35.205999999999996 + - type: map_at_10 + value: 50.782000000000004 + - type: map_at_100 + value: 51.547 + - type: map_at_1000 + value: 51.554 + - type: map_at_3 + value: 46.515 + - type: map_at_5 + value: 49.296 + - type: mrr_at_1 + value: 35.632999999999996 + - type: mrr_at_10 + value: 50.958999999999996 + - type: mrr_at_100 + value: 51.724000000000004 + - type: mrr_at_1000 + value: 51.731 + - type: mrr_at_3 + value: 46.669 + - type: mrr_at_5 + value: 49.439 + - type: ndcg_at_1 + value: 35.205999999999996 + - type: ndcg_at_10 + value: 58.835 + - type: ndcg_at_100 + value: 62.095 + - type: ndcg_at_1000 + value: 62.255 + - type: ndcg_at_3 + value: 50.255 + - type: ndcg_at_5 + value: 55.296 + - type: precision_at_1 + value: 35.205999999999996 + - type: precision_at_10 + value: 8.421 + - type: precision_at_100 + value: 0.984 + - type: precision_at_1000 + value: 0.1 + - type: precision_at_3 + value: 20.365 + - type: precision_at_5 + value: 14.680000000000001 + - type: recall_at_1 + value: 35.205999999999996 + - type: recall_at_10 + value: 84.211 + - type: recall_at_100 + value: 98.43499999999999 + - type: recall_at_1000 + value: 99.644 + - type: recall_at_3 + value: 61.095 + - type: recall_at_5 + value: 73.4 + - task: + type: Clustering + dataset: + type: mteb/arxiv-clustering-p2p + name: MTEB ArxivClusteringP2P + config: default + split: test + revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d + metrics: + - type: v_measure + value: 47.52644476278646 + - task: + type: Clustering + dataset: + type: mteb/arxiv-clustering-s2s + name: MTEB ArxivClusteringS2S + config: default + split: test + revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 + metrics: + - type: v_measure + value: 39.973045724188964 + - task: + type: Reranking + dataset: + type: mteb/askubuntudupquestions-reranking + name: MTEB AskUbuntuDupQuestions + config: default + split: test + revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 + metrics: + - type: map + value: 62.28285314871488 + - type: mrr + value: 74.52743701358659 + - task: + type: STS + dataset: + type: mteb/biosses-sts + name: MTEB BIOSSES + config: default + split: test + revision: d3fb88f8f02e40887cd149695127462bbcf29b4a + metrics: + - type: cos_sim_pearson + value: 80.09041909160327 + - type: cos_sim_spearman + value: 79.96266537706944 + - type: euclidean_pearson + value: 79.50774978162241 + - type: euclidean_spearman + value: 79.9144715078551 + - type: manhattan_pearson + value: 79.2062139879302 + - type: manhattan_spearman + value: 79.35000081468212 + - task: + type: Classification + dataset: + type: mteb/banking77 + name: MTEB Banking77Classification + config: default + split: test + revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 + metrics: + - type: accuracy + value: 85.31493506493506 + - type: f1 + value: 85.2704557977762 + - task: + type: Clustering + dataset: + type: mteb/biorxiv-clustering-p2p + name: MTEB BiorxivClusteringP2P + config: default + split: test + revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 + metrics: + - type: v_measure + value: 39.6837242810816 + - task: + type: Clustering + dataset: + type: mteb/biorxiv-clustering-s2s + name: MTEB BiorxivClusteringS2S + config: default + split: test + revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 + metrics: + - type: v_measure + value: 35.38881249555897 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackAndroidRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 27.884999999999998 + - type: map_at_10 + value: 39.574 + - type: map_at_100 + value: 40.993 + - type: map_at_1000 + value: 41.129 + - type: map_at_3 + value: 36.089 + - type: map_at_5 + value: 38.191 + - type: mrr_at_1 + value: 34.477999999999994 + - type: mrr_at_10 + value: 45.411 + - type: mrr_at_100 + value: 46.089999999999996 + - type: mrr_at_1000 + value: 46.147 + - type: mrr_at_3 + value: 42.346000000000004 + - type: mrr_at_5 + value: 44.292 + - type: ndcg_at_1 + value: 34.477999999999994 + - type: ndcg_at_10 + value: 46.123999999999995 + - type: ndcg_at_100 + value: 51.349999999999994 + - type: ndcg_at_1000 + value: 53.578 + - type: ndcg_at_3 + value: 40.824 + - type: ndcg_at_5 + value: 43.571 + - type: precision_at_1 + value: 34.477999999999994 + - type: precision_at_10 + value: 8.841000000000001 + - type: precision_at_100 + value: 1.4460000000000002 + - type: precision_at_1000 + value: 0.192 + - type: precision_at_3 + value: 19.742 + - type: precision_at_5 + value: 14.421000000000001 + - type: recall_at_1 + value: 27.884999999999998 + - type: recall_at_10 + value: 59.087 + - type: recall_at_100 + value: 80.609 + - type: recall_at_1000 + value: 95.054 + - type: recall_at_3 + value: 44.082 + - type: recall_at_5 + value: 51.593999999999994 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackEnglishRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 30.639 + - type: map_at_10 + value: 40.047 + - type: map_at_100 + value: 41.302 + - type: map_at_1000 + value: 41.425 + - type: map_at_3 + value: 37.406 + - type: map_at_5 + value: 38.934000000000005 + - type: mrr_at_1 + value: 37.707 + - type: mrr_at_10 + value: 46.082 + - type: mrr_at_100 + value: 46.745 + - type: mrr_at_1000 + value: 46.786 + - type: mrr_at_3 + value: 43.980999999999995 + - type: mrr_at_5 + value: 45.287 + - type: ndcg_at_1 + value: 37.707 + - type: ndcg_at_10 + value: 45.525 + - type: ndcg_at_100 + value: 49.976 + - type: ndcg_at_1000 + value: 51.94499999999999 + - type: ndcg_at_3 + value: 41.704 + - type: ndcg_at_5 + value: 43.596000000000004 + - type: precision_at_1 + value: 37.707 + - type: precision_at_10 + value: 8.465 + - type: precision_at_100 + value: 1.375 + - type: precision_at_1000 + value: 0.183 + - type: precision_at_3 + value: 19.979 + - type: precision_at_5 + value: 14.115 + - type: recall_at_1 + value: 30.639 + - type: recall_at_10 + value: 54.775 + - type: recall_at_100 + value: 73.678 + - type: recall_at_1000 + value: 86.142 + - type: recall_at_3 + value: 43.230000000000004 + - type: recall_at_5 + value: 48.622 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackGamingRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 38.038 + - type: map_at_10 + value: 49.922 + - type: map_at_100 + value: 51.032 + - type: map_at_1000 + value: 51.085 + - type: map_at_3 + value: 46.664 + - type: map_at_5 + value: 48.588 + - type: mrr_at_1 + value: 43.95 + - type: mrr_at_10 + value: 53.566 + - type: mrr_at_100 + value: 54.318999999999996 + - type: mrr_at_1000 + value: 54.348 + - type: mrr_at_3 + value: 51.066 + - type: mrr_at_5 + value: 52.649 + - type: ndcg_at_1 + value: 43.95 + - type: ndcg_at_10 + value: 55.676 + - type: ndcg_at_100 + value: 60.126000000000005 + - type: ndcg_at_1000 + value: 61.208 + - type: ndcg_at_3 + value: 50.20400000000001 + - type: ndcg_at_5 + value: 53.038 + - type: precision_at_1 + value: 43.95 + - type: precision_at_10 + value: 8.953 + - type: precision_at_100 + value: 1.2109999999999999 + - type: precision_at_1000 + value: 0.135 + - type: precision_at_3 + value: 22.256999999999998 + - type: precision_at_5 + value: 15.524 + - type: recall_at_1 + value: 38.038 + - type: recall_at_10 + value: 69.15 + - type: recall_at_100 + value: 88.31599999999999 + - type: recall_at_1000 + value: 95.993 + - type: recall_at_3 + value: 54.663 + - type: recall_at_5 + value: 61.373 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackGisRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 24.872 + - type: map_at_10 + value: 32.912 + - type: map_at_100 + value: 33.972 + - type: map_at_1000 + value: 34.046 + - type: map_at_3 + value: 30.361 + - type: map_at_5 + value: 31.704 + - type: mrr_at_1 + value: 26.779999999999998 + - type: mrr_at_10 + value: 34.812 + - type: mrr_at_100 + value: 35.754999999999995 + - type: mrr_at_1000 + value: 35.809000000000005 + - type: mrr_at_3 + value: 32.335 + - type: mrr_at_5 + value: 33.64 + - type: ndcg_at_1 + value: 26.779999999999998 + - type: ndcg_at_10 + value: 37.623 + - type: ndcg_at_100 + value: 42.924 + - type: ndcg_at_1000 + value: 44.856 + - type: ndcg_at_3 + value: 32.574 + - type: ndcg_at_5 + value: 34.842 + - type: precision_at_1 + value: 26.779999999999998 + - type: precision_at_10 + value: 5.729 + - type: precision_at_100 + value: 0.886 + - type: precision_at_1000 + value: 0.109 + - type: precision_at_3 + value: 13.559 + - type: precision_at_5 + value: 9.469 + - type: recall_at_1 + value: 24.872 + - type: recall_at_10 + value: 50.400999999999996 + - type: recall_at_100 + value: 74.954 + - type: recall_at_1000 + value: 89.56 + - type: recall_at_3 + value: 36.726 + - type: recall_at_5 + value: 42.138999999999996 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackMathematicaRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 16.803 + - type: map_at_10 + value: 24.348 + - type: map_at_100 + value: 25.56 + - type: map_at_1000 + value: 25.668000000000003 + - type: map_at_3 + value: 21.811 + - type: map_at_5 + value: 23.287 + - type: mrr_at_1 + value: 20.771 + - type: mrr_at_10 + value: 28.961 + - type: mrr_at_100 + value: 29.979 + - type: mrr_at_1000 + value: 30.046 + - type: mrr_at_3 + value: 26.555 + - type: mrr_at_5 + value: 28.060000000000002 + - type: ndcg_at_1 + value: 20.771 + - type: ndcg_at_10 + value: 29.335 + - type: ndcg_at_100 + value: 35.188 + - type: ndcg_at_1000 + value: 37.812 + - type: ndcg_at_3 + value: 24.83 + - type: ndcg_at_5 + value: 27.119 + - type: precision_at_1 + value: 20.771 + - type: precision_at_10 + value: 5.4350000000000005 + - type: precision_at_100 + value: 0.9480000000000001 + - type: precision_at_1000 + value: 0.13 + - type: precision_at_3 + value: 11.982 + - type: precision_at_5 + value: 8.831 + - type: recall_at_1 + value: 16.803 + - type: recall_at_10 + value: 40.039 + - type: recall_at_100 + value: 65.83200000000001 + - type: recall_at_1000 + value: 84.478 + - type: recall_at_3 + value: 27.682000000000002 + - type: recall_at_5 + value: 33.535 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackPhysicsRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 28.345 + - type: map_at_10 + value: 37.757000000000005 + - type: map_at_100 + value: 39.141 + - type: map_at_1000 + value: 39.262 + - type: map_at_3 + value: 35.183 + - type: map_at_5 + value: 36.592 + - type: mrr_at_1 + value: 34.649 + - type: mrr_at_10 + value: 43.586999999999996 + - type: mrr_at_100 + value: 44.481 + - type: mrr_at_1000 + value: 44.542 + - type: mrr_at_3 + value: 41.29 + - type: mrr_at_5 + value: 42.642 + - type: ndcg_at_1 + value: 34.649 + - type: ndcg_at_10 + value: 43.161 + - type: ndcg_at_100 + value: 48.734 + - type: ndcg_at_1000 + value: 51.046 + - type: ndcg_at_3 + value: 39.118 + - type: ndcg_at_5 + value: 41.022 + - type: precision_at_1 + value: 34.649 + - type: precision_at_10 + value: 7.603 + - type: precision_at_100 + value: 1.209 + - type: precision_at_1000 + value: 0.157 + - type: precision_at_3 + value: 18.319 + - type: precision_at_5 + value: 12.839 + - type: recall_at_1 + value: 28.345 + - type: recall_at_10 + value: 53.367 + - type: recall_at_100 + value: 76.453 + - type: recall_at_1000 + value: 91.82000000000001 + - type: recall_at_3 + value: 41.636 + - type: recall_at_5 + value: 46.760000000000005 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackProgrammersRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 22.419 + - type: map_at_10 + value: 31.716 + - type: map_at_100 + value: 33.152 + - type: map_at_1000 + value: 33.267 + - type: map_at_3 + value: 28.74 + - type: map_at_5 + value: 30.48 + - type: mrr_at_1 + value: 28.310999999999996 + - type: mrr_at_10 + value: 37.039 + - type: mrr_at_100 + value: 38.09 + - type: mrr_at_1000 + value: 38.145 + - type: mrr_at_3 + value: 34.437 + - type: mrr_at_5 + value: 36.024 + - type: ndcg_at_1 + value: 28.310999999999996 + - type: ndcg_at_10 + value: 37.41 + - type: ndcg_at_100 + value: 43.647999999999996 + - type: ndcg_at_1000 + value: 46.007 + - type: ndcg_at_3 + value: 32.509 + - type: ndcg_at_5 + value: 34.943999999999996 + - type: precision_at_1 + value: 28.310999999999996 + - type: precision_at_10 + value: 6.963 + - type: precision_at_100 + value: 1.1860000000000002 + - type: precision_at_1000 + value: 0.154 + - type: precision_at_3 + value: 15.867999999999999 + - type: precision_at_5 + value: 11.507000000000001 + - type: recall_at_1 + value: 22.419 + - type: recall_at_10 + value: 49.28 + - type: recall_at_100 + value: 75.802 + - type: recall_at_1000 + value: 92.032 + - type: recall_at_3 + value: 35.399 + - type: recall_at_5 + value: 42.027 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 24.669249999999998 + - type: map_at_10 + value: 33.332583333333325 + - type: map_at_100 + value: 34.557833333333335 + - type: map_at_1000 + value: 34.67141666666666 + - type: map_at_3 + value: 30.663166666666662 + - type: map_at_5 + value: 32.14883333333333 + - type: mrr_at_1 + value: 29.193833333333334 + - type: mrr_at_10 + value: 37.47625 + - type: mrr_at_100 + value: 38.3545 + - type: mrr_at_1000 + value: 38.413166666666676 + - type: mrr_at_3 + value: 35.06741666666667 + - type: mrr_at_5 + value: 36.450666666666656 + - type: ndcg_at_1 + value: 29.193833333333334 + - type: ndcg_at_10 + value: 38.505416666666676 + - type: ndcg_at_100 + value: 43.81125 + - type: ndcg_at_1000 + value: 46.09558333333333 + - type: ndcg_at_3 + value: 33.90916666666667 + - type: ndcg_at_5 + value: 36.07666666666666 + - type: precision_at_1 + value: 29.193833333333334 + - type: precision_at_10 + value: 6.7251666666666665 + - type: precision_at_100 + value: 1.1058333333333332 + - type: precision_at_1000 + value: 0.14833333333333332 + - type: precision_at_3 + value: 15.554166666666665 + - type: precision_at_5 + value: 11.079250000000002 + - type: recall_at_1 + value: 24.669249999999998 + - type: recall_at_10 + value: 49.75583333333332 + - type: recall_at_100 + value: 73.06908333333332 + - type: recall_at_1000 + value: 88.91316666666667 + - type: recall_at_3 + value: 36.913250000000005 + - type: recall_at_5 + value: 42.48641666666666 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackStatsRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 24.044999999999998 + - type: map_at_10 + value: 30.349999999999998 + - type: map_at_100 + value: 31.273 + - type: map_at_1000 + value: 31.362000000000002 + - type: map_at_3 + value: 28.508 + - type: map_at_5 + value: 29.369 + - type: mrr_at_1 + value: 26.994 + - type: mrr_at_10 + value: 33.12 + - type: mrr_at_100 + value: 33.904 + - type: mrr_at_1000 + value: 33.967000000000006 + - type: mrr_at_3 + value: 31.365 + - type: mrr_at_5 + value: 32.124 + - type: ndcg_at_1 + value: 26.994 + - type: ndcg_at_10 + value: 34.214 + - type: ndcg_at_100 + value: 38.681 + - type: ndcg_at_1000 + value: 40.926 + - type: ndcg_at_3 + value: 30.725 + - type: ndcg_at_5 + value: 31.967000000000002 + - type: precision_at_1 + value: 26.994 + - type: precision_at_10 + value: 5.215 + - type: precision_at_100 + value: 0.807 + - type: precision_at_1000 + value: 0.108 + - type: precision_at_3 + value: 12.986 + - type: precision_at_5 + value: 8.712 + - type: recall_at_1 + value: 24.044999999999998 + - type: recall_at_10 + value: 43.456 + - type: recall_at_100 + value: 63.675000000000004 + - type: recall_at_1000 + value: 80.05499999999999 + - type: recall_at_3 + value: 33.561 + - type: recall_at_5 + value: 36.767 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackTexRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 15.672 + - type: map_at_10 + value: 22.641 + - type: map_at_100 + value: 23.75 + - type: map_at_1000 + value: 23.877000000000002 + - type: map_at_3 + value: 20.219 + - type: map_at_5 + value: 21.648 + - type: mrr_at_1 + value: 18.823 + - type: mrr_at_10 + value: 26.101999999999997 + - type: mrr_at_100 + value: 27.038 + - type: mrr_at_1000 + value: 27.118 + - type: mrr_at_3 + value: 23.669 + - type: mrr_at_5 + value: 25.173000000000002 + - type: ndcg_at_1 + value: 18.823 + - type: ndcg_at_10 + value: 27.176000000000002 + - type: ndcg_at_100 + value: 32.42 + - type: ndcg_at_1000 + value: 35.413 + - type: ndcg_at_3 + value: 22.756999999999998 + - type: ndcg_at_5 + value: 25.032 + - type: precision_at_1 + value: 18.823 + - type: precision_at_10 + value: 5.034000000000001 + - type: precision_at_100 + value: 0.895 + - type: precision_at_1000 + value: 0.132 + - type: precision_at_3 + value: 10.771 + - type: precision_at_5 + value: 8.1 + - type: recall_at_1 + value: 15.672 + - type: recall_at_10 + value: 37.296 + - type: recall_at_100 + value: 60.863 + - type: recall_at_1000 + value: 82.234 + - type: recall_at_3 + value: 25.330000000000002 + - type: recall_at_5 + value: 30.964000000000002 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackUnixRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 24.633 + - type: map_at_10 + value: 32.858 + - type: map_at_100 + value: 34.038000000000004 + - type: map_at_1000 + value: 34.141 + - type: map_at_3 + value: 30.209000000000003 + - type: map_at_5 + value: 31.567 + - type: mrr_at_1 + value: 28.358 + - type: mrr_at_10 + value: 36.433 + - type: mrr_at_100 + value: 37.352000000000004 + - type: mrr_at_1000 + value: 37.41 + - type: mrr_at_3 + value: 34.033 + - type: mrr_at_5 + value: 35.246 + - type: ndcg_at_1 + value: 28.358 + - type: ndcg_at_10 + value: 37.973 + - type: ndcg_at_100 + value: 43.411 + - type: ndcg_at_1000 + value: 45.747 + - type: ndcg_at_3 + value: 32.934999999999995 + - type: ndcg_at_5 + value: 35.013 + - type: precision_at_1 + value: 28.358 + - type: precision_at_10 + value: 6.418 + - type: precision_at_100 + value: 1.02 + - type: precision_at_1000 + value: 0.133 + - type: precision_at_3 + value: 14.677000000000001 + - type: precision_at_5 + value: 10.335999999999999 + - type: recall_at_1 + value: 24.633 + - type: recall_at_10 + value: 50.048 + - type: recall_at_100 + value: 73.821 + - type: recall_at_1000 + value: 90.046 + - type: recall_at_3 + value: 36.284 + - type: recall_at_5 + value: 41.370000000000005 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackWebmastersRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 23.133 + - type: map_at_10 + value: 31.491999999999997 + - type: map_at_100 + value: 33.062000000000005 + - type: map_at_1000 + value: 33.256 + - type: map_at_3 + value: 28.886 + - type: map_at_5 + value: 30.262 + - type: mrr_at_1 + value: 28.063 + - type: mrr_at_10 + value: 36.144 + - type: mrr_at_100 + value: 37.14 + - type: mrr_at_1000 + value: 37.191 + - type: mrr_at_3 + value: 33.762 + - type: mrr_at_5 + value: 34.997 + - type: ndcg_at_1 + value: 28.063 + - type: ndcg_at_10 + value: 36.951 + - type: ndcg_at_100 + value: 43.287 + - type: ndcg_at_1000 + value: 45.777 + - type: ndcg_at_3 + value: 32.786 + - type: ndcg_at_5 + value: 34.65 + - type: precision_at_1 + value: 28.063 + - type: precision_at_10 + value: 7.055 + - type: precision_at_100 + value: 1.476 + - type: precision_at_1000 + value: 0.22899999999999998 + - type: precision_at_3 + value: 15.481 + - type: precision_at_5 + value: 11.186 + - type: recall_at_1 + value: 23.133 + - type: recall_at_10 + value: 47.285 + - type: recall_at_100 + value: 76.176 + - type: recall_at_1000 + value: 92.176 + - type: recall_at_3 + value: 35.223 + - type: recall_at_5 + value: 40.142 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackWordpressRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 19.547 + - type: map_at_10 + value: 26.374 + - type: map_at_100 + value: 27.419 + - type: map_at_1000 + value: 27.539 + - type: map_at_3 + value: 23.882 + - type: map_at_5 + value: 25.163999999999998 + - type: mrr_at_1 + value: 21.442 + - type: mrr_at_10 + value: 28.458 + - type: mrr_at_100 + value: 29.360999999999997 + - type: mrr_at_1000 + value: 29.448999999999998 + - type: mrr_at_3 + value: 25.97 + - type: mrr_at_5 + value: 27.273999999999997 + - type: ndcg_at_1 + value: 21.442 + - type: ndcg_at_10 + value: 30.897000000000002 + - type: ndcg_at_100 + value: 35.99 + - type: ndcg_at_1000 + value: 38.832 + - type: ndcg_at_3 + value: 25.944 + - type: ndcg_at_5 + value: 28.126 + - type: precision_at_1 + value: 21.442 + - type: precision_at_10 + value: 4.9910000000000005 + - type: precision_at_100 + value: 0.8109999999999999 + - type: precision_at_1000 + value: 0.11800000000000001 + - type: precision_at_3 + value: 11.029 + - type: precision_at_5 + value: 7.911 + - type: recall_at_1 + value: 19.547 + - type: recall_at_10 + value: 42.886 + - type: recall_at_100 + value: 66.64999999999999 + - type: recall_at_1000 + value: 87.368 + - type: recall_at_3 + value: 29.143 + - type: recall_at_5 + value: 34.544000000000004 + - task: + type: Retrieval + dataset: + type: climate-fever + name: MTEB ClimateFEVER + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 15.572 + - type: map_at_10 + value: 25.312 + - type: map_at_100 + value: 27.062 + - type: map_at_1000 + value: 27.253 + - type: map_at_3 + value: 21.601 + - type: map_at_5 + value: 23.473 + - type: mrr_at_1 + value: 34.984 + - type: mrr_at_10 + value: 46.406 + - type: mrr_at_100 + value: 47.179 + - type: mrr_at_1000 + value: 47.21 + - type: mrr_at_3 + value: 43.485 + - type: mrr_at_5 + value: 45.322 + - type: ndcg_at_1 + value: 34.984 + - type: ndcg_at_10 + value: 34.344 + - type: ndcg_at_100 + value: 41.015 + - type: ndcg_at_1000 + value: 44.366 + - type: ndcg_at_3 + value: 29.119 + - type: ndcg_at_5 + value: 30.825999999999997 + - type: precision_at_1 + value: 34.984 + - type: precision_at_10 + value: 10.358 + - type: precision_at_100 + value: 1.762 + - type: precision_at_1000 + value: 0.23900000000000002 + - type: precision_at_3 + value: 21.368000000000002 + - type: precision_at_5 + value: 15.948 + - type: recall_at_1 + value: 15.572 + - type: recall_at_10 + value: 39.367999999999995 + - type: recall_at_100 + value: 62.183 + - type: recall_at_1000 + value: 80.92200000000001 + - type: recall_at_3 + value: 26.131999999999998 + - type: recall_at_5 + value: 31.635999999999996 + - task: + type: Retrieval + dataset: + type: dbpedia-entity + name: MTEB DBPedia + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 8.848 + - type: map_at_10 + value: 19.25 + - type: map_at_100 + value: 27.193 + - type: map_at_1000 + value: 28.721999999999998 + - type: map_at_3 + value: 13.968 + - type: map_at_5 + value: 16.283 + - type: mrr_at_1 + value: 68.75 + - type: mrr_at_10 + value: 76.25 + - type: mrr_at_100 + value: 76.534 + - type: mrr_at_1000 + value: 76.53999999999999 + - type: mrr_at_3 + value: 74.667 + - type: mrr_at_5 + value: 75.86699999999999 + - type: ndcg_at_1 + value: 56.00000000000001 + - type: ndcg_at_10 + value: 41.426 + - type: ndcg_at_100 + value: 45.660000000000004 + - type: ndcg_at_1000 + value: 53.02 + - type: ndcg_at_3 + value: 46.581 + - type: ndcg_at_5 + value: 43.836999999999996 + - type: precision_at_1 + value: 68.75 + - type: precision_at_10 + value: 32.800000000000004 + - type: precision_at_100 + value: 10.440000000000001 + - type: precision_at_1000 + value: 1.9980000000000002 + - type: precision_at_3 + value: 49.667 + - type: precision_at_5 + value: 42.25 + - type: recall_at_1 + value: 8.848 + - type: recall_at_10 + value: 24.467 + - type: recall_at_100 + value: 51.344 + - type: recall_at_1000 + value: 75.235 + - type: recall_at_3 + value: 15.329 + - type: recall_at_5 + value: 18.892999999999997 + - task: + type: Classification + dataset: + type: mteb/emotion + name: MTEB EmotionClassification + config: default + split: test + revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 + metrics: + - type: accuracy + value: 48.95 + - type: f1 + value: 43.44563593360779 + - task: + type: Retrieval + dataset: + type: fever + name: MTEB FEVER + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 78.036 + - type: map_at_10 + value: 85.639 + - type: map_at_100 + value: 85.815 + - type: map_at_1000 + value: 85.829 + - type: map_at_3 + value: 84.795 + - type: map_at_5 + value: 85.336 + - type: mrr_at_1 + value: 84.353 + - type: mrr_at_10 + value: 90.582 + - type: mrr_at_100 + value: 90.617 + - type: mrr_at_1000 + value: 90.617 + - type: mrr_at_3 + value: 90.132 + - type: mrr_at_5 + value: 90.447 + - type: ndcg_at_1 + value: 84.353 + - type: ndcg_at_10 + value: 89.003 + - type: ndcg_at_100 + value: 89.60000000000001 + - type: ndcg_at_1000 + value: 89.836 + - type: ndcg_at_3 + value: 87.81400000000001 + - type: ndcg_at_5 + value: 88.478 + - type: precision_at_1 + value: 84.353 + - type: precision_at_10 + value: 10.482 + - type: precision_at_100 + value: 1.099 + - type: precision_at_1000 + value: 0.11399999999999999 + - type: precision_at_3 + value: 33.257999999999996 + - type: precision_at_5 + value: 20.465 + - type: recall_at_1 + value: 78.036 + - type: recall_at_10 + value: 94.517 + - type: recall_at_100 + value: 96.828 + - type: recall_at_1000 + value: 98.261 + - type: recall_at_3 + value: 91.12 + - type: recall_at_5 + value: 92.946 + - task: + type: Retrieval + dataset: + type: fiqa + name: MTEB FiQA2018 + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 20.191 + - type: map_at_10 + value: 32.369 + - type: map_at_100 + value: 34.123999999999995 + - type: map_at_1000 + value: 34.317 + - type: map_at_3 + value: 28.71 + - type: map_at_5 + value: 30.607 + - type: mrr_at_1 + value: 40.894999999999996 + - type: mrr_at_10 + value: 48.842 + - type: mrr_at_100 + value: 49.599 + - type: mrr_at_1000 + value: 49.647000000000006 + - type: mrr_at_3 + value: 46.785 + - type: mrr_at_5 + value: 47.672 + - type: ndcg_at_1 + value: 40.894999999999996 + - type: ndcg_at_10 + value: 39.872 + - type: ndcg_at_100 + value: 46.126 + - type: ndcg_at_1000 + value: 49.476 + - type: ndcg_at_3 + value: 37.153000000000006 + - type: ndcg_at_5 + value: 37.433 + - type: precision_at_1 + value: 40.894999999999996 + - type: precision_at_10 + value: 10.818 + - type: precision_at_100 + value: 1.73 + - type: precision_at_1000 + value: 0.231 + - type: precision_at_3 + value: 25.051000000000002 + - type: precision_at_5 + value: 17.531 + - type: recall_at_1 + value: 20.191 + - type: recall_at_10 + value: 45.768 + - type: recall_at_100 + value: 68.82000000000001 + - type: recall_at_1000 + value: 89.133 + - type: recall_at_3 + value: 33.296 + - type: recall_at_5 + value: 38.022 + - task: + type: Retrieval + dataset: + type: hotpotqa + name: MTEB HotpotQA + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 39.257 + - type: map_at_10 + value: 61.467000000000006 + - type: map_at_100 + value: 62.364 + - type: map_at_1000 + value: 62.424 + - type: map_at_3 + value: 58.228 + - type: map_at_5 + value: 60.283 + - type: mrr_at_1 + value: 78.515 + - type: mrr_at_10 + value: 84.191 + - type: mrr_at_100 + value: 84.378 + - type: mrr_at_1000 + value: 84.385 + - type: mrr_at_3 + value: 83.284 + - type: mrr_at_5 + value: 83.856 + - type: ndcg_at_1 + value: 78.515 + - type: ndcg_at_10 + value: 69.78999999999999 + - type: ndcg_at_100 + value: 72.886 + - type: ndcg_at_1000 + value: 74.015 + - type: ndcg_at_3 + value: 65.23 + - type: ndcg_at_5 + value: 67.80199999999999 + - type: precision_at_1 + value: 78.515 + - type: precision_at_10 + value: 14.519000000000002 + - type: precision_at_100 + value: 1.694 + - type: precision_at_1000 + value: 0.184 + - type: precision_at_3 + value: 41.702 + - type: precision_at_5 + value: 27.046999999999997 + - type: recall_at_1 + value: 39.257 + - type: recall_at_10 + value: 72.59299999999999 + - type: recall_at_100 + value: 84.679 + - type: recall_at_1000 + value: 92.12 + - type: recall_at_3 + value: 62.552 + - type: recall_at_5 + value: 67.616 + - task: + type: Classification + dataset: + type: mteb/imdb + name: MTEB ImdbClassification + config: default + split: test + revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 + metrics: + - type: accuracy + value: 91.5152 + - type: ap + value: 87.64584669595709 + - type: f1 + value: 91.50605576428437 + - task: + type: Retrieval + dataset: + type: msmarco + name: MTEB MSMARCO + config: default + split: dev + revision: None + metrics: + - type: map_at_1 + value: 21.926000000000002 + - type: map_at_10 + value: 34.049 + - type: map_at_100 + value: 35.213 + - type: map_at_1000 + value: 35.265 + - type: map_at_3 + value: 30.309 + - type: map_at_5 + value: 32.407000000000004 + - type: mrr_at_1 + value: 22.55 + - type: mrr_at_10 + value: 34.657 + - type: mrr_at_100 + value: 35.760999999999996 + - type: mrr_at_1000 + value: 35.807 + - type: mrr_at_3 + value: 30.989 + - type: mrr_at_5 + value: 33.039 + - type: ndcg_at_1 + value: 22.55 + - type: ndcg_at_10 + value: 40.842 + - type: ndcg_at_100 + value: 46.436 + - type: ndcg_at_1000 + value: 47.721999999999994 + - type: ndcg_at_3 + value: 33.209 + - type: ndcg_at_5 + value: 36.943 + - type: precision_at_1 + value: 22.55 + - type: precision_at_10 + value: 6.447 + - type: precision_at_100 + value: 0.9249999999999999 + - type: precision_at_1000 + value: 0.104 + - type: precision_at_3 + value: 14.136000000000001 + - type: precision_at_5 + value: 10.381 + - type: recall_at_1 + value: 21.926000000000002 + - type: recall_at_10 + value: 61.724999999999994 + - type: recall_at_100 + value: 87.604 + - type: recall_at_1000 + value: 97.421 + - type: recall_at_3 + value: 40.944 + - type: recall_at_5 + value: 49.915 + - task: + type: Classification + dataset: + type: mteb/mtop_domain + name: MTEB MTOPDomainClassification (en) + config: en + split: test + revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf + metrics: + - type: accuracy + value: 93.54765161878704 + - type: f1 + value: 93.3298945415573 + - task: + type: Classification + dataset: + type: mteb/mtop_intent + name: MTEB MTOPIntentClassification (en) + config: en + split: test + revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba + metrics: + - type: accuracy + value: 75.71591427268582 + - type: f1 + value: 59.32113870474471 + - task: + type: Classification + dataset: + type: mteb/amazon_massive_intent + name: MTEB MassiveIntentClassification (en) + config: en + split: test + revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 + metrics: + - type: accuracy + value: 75.83053127101547 + - type: f1 + value: 73.60757944876475 + - task: + type: Classification + dataset: + type: mteb/amazon_massive_scenario + name: MTEB MassiveScenarioClassification (en) + config: en + split: test + revision: 7d571f92784cd94a019292a1f45445077d0ef634 + metrics: + - type: accuracy + value: 78.72562205783457 + - type: f1 + value: 78.63761662505502 + - task: + type: Clustering + dataset: + type: mteb/medrxiv-clustering-p2p + name: MTEB MedrxivClusteringP2P + config: default + split: test + revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 + metrics: + - type: v_measure + value: 33.37935633767996 + - task: + type: Clustering + dataset: + type: mteb/medrxiv-clustering-s2s + name: MTEB MedrxivClusteringS2S + config: default + split: test + revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 + metrics: + - type: v_measure + value: 31.55270546130387 + - task: + type: Reranking + dataset: + type: mteb/mind_small + name: MTEB MindSmallReranking + config: default + split: test + revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 + metrics: + - type: map + value: 30.462692753143834 + - type: mrr + value: 31.497569753511563 + - task: + type: Retrieval + dataset: + type: nfcorpus + name: MTEB NFCorpus + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 5.646 + - type: map_at_10 + value: 12.498 + - type: map_at_100 + value: 15.486 + - type: map_at_1000 + value: 16.805999999999997 + - type: map_at_3 + value: 9.325 + - type: map_at_5 + value: 10.751 + - type: mrr_at_1 + value: 43.034 + - type: mrr_at_10 + value: 52.662 + - type: mrr_at_100 + value: 53.189 + - type: mrr_at_1000 + value: 53.25 + - type: mrr_at_3 + value: 50.929 + - type: mrr_at_5 + value: 51.92 + - type: ndcg_at_1 + value: 41.796 + - type: ndcg_at_10 + value: 33.477000000000004 + - type: ndcg_at_100 + value: 29.996000000000002 + - type: ndcg_at_1000 + value: 38.864 + - type: ndcg_at_3 + value: 38.940000000000005 + - type: ndcg_at_5 + value: 36.689 + - type: precision_at_1 + value: 43.034 + - type: precision_at_10 + value: 24.799 + - type: precision_at_100 + value: 7.432999999999999 + - type: precision_at_1000 + value: 1.9929999999999999 + - type: precision_at_3 + value: 36.842000000000006 + - type: precision_at_5 + value: 32.135999999999996 + - type: recall_at_1 + value: 5.646 + - type: recall_at_10 + value: 15.963 + - type: recall_at_100 + value: 29.492 + - type: recall_at_1000 + value: 61.711000000000006 + - type: recall_at_3 + value: 10.585 + - type: recall_at_5 + value: 12.753999999999998 + - task: + type: Retrieval + dataset: + type: nq + name: MTEB NQ + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 27.602 + - type: map_at_10 + value: 41.545 + - type: map_at_100 + value: 42.644999999999996 + - type: map_at_1000 + value: 42.685 + - type: map_at_3 + value: 37.261 + - type: map_at_5 + value: 39.706 + - type: mrr_at_1 + value: 31.141000000000002 + - type: mrr_at_10 + value: 44.139 + - type: mrr_at_100 + value: 44.997 + - type: mrr_at_1000 + value: 45.025999999999996 + - type: mrr_at_3 + value: 40.503 + - type: mrr_at_5 + value: 42.64 + - type: ndcg_at_1 + value: 31.141000000000002 + - type: ndcg_at_10 + value: 48.995 + - type: ndcg_at_100 + value: 53.788000000000004 + - type: ndcg_at_1000 + value: 54.730000000000004 + - type: ndcg_at_3 + value: 40.844 + - type: ndcg_at_5 + value: 44.955 + - type: precision_at_1 + value: 31.141000000000002 + - type: precision_at_10 + value: 8.233 + - type: precision_at_100 + value: 1.093 + - type: precision_at_1000 + value: 0.11800000000000001 + - type: precision_at_3 + value: 18.579 + - type: precision_at_5 + value: 13.533999999999999 + - type: recall_at_1 + value: 27.602 + - type: recall_at_10 + value: 69.216 + - type: recall_at_100 + value: 90.252 + - type: recall_at_1000 + value: 97.27 + - type: recall_at_3 + value: 47.987 + - type: recall_at_5 + value: 57.438 + - task: + type: Retrieval + dataset: + type: quora + name: MTEB QuoraRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 70.949 + - type: map_at_10 + value: 84.89999999999999 + - type: map_at_100 + value: 85.531 + - type: map_at_1000 + value: 85.548 + - type: map_at_3 + value: 82.027 + - type: map_at_5 + value: 83.853 + - type: mrr_at_1 + value: 81.69999999999999 + - type: mrr_at_10 + value: 87.813 + - type: mrr_at_100 + value: 87.917 + - type: mrr_at_1000 + value: 87.91799999999999 + - type: mrr_at_3 + value: 86.938 + - type: mrr_at_5 + value: 87.53999999999999 + - type: ndcg_at_1 + value: 81.75 + - type: ndcg_at_10 + value: 88.55499999999999 + - type: ndcg_at_100 + value: 89.765 + - type: ndcg_at_1000 + value: 89.871 + - type: ndcg_at_3 + value: 85.905 + - type: ndcg_at_5 + value: 87.41 + - type: precision_at_1 + value: 81.75 + - type: precision_at_10 + value: 13.403 + - type: precision_at_100 + value: 1.528 + - type: precision_at_1000 + value: 0.157 + - type: precision_at_3 + value: 37.597 + - type: precision_at_5 + value: 24.69 + - type: recall_at_1 + value: 70.949 + - type: recall_at_10 + value: 95.423 + - type: recall_at_100 + value: 99.509 + - type: recall_at_1000 + value: 99.982 + - type: recall_at_3 + value: 87.717 + - type: recall_at_5 + value: 92.032 + - task: + type: Clustering + dataset: + type: mteb/reddit-clustering + name: MTEB RedditClustering + config: default + split: test + revision: 24640382cdbf8abc73003fb0fa6d111a705499eb + metrics: + - type: v_measure + value: 51.76962893449579 + - task: + type: Clustering + dataset: + type: mteb/reddit-clustering-p2p + name: MTEB RedditClusteringP2P + config: default + split: test + revision: 282350215ef01743dc01b456c7f5241fa8937f16 + metrics: + - type: v_measure + value: 62.32897690686379 + - task: + type: Retrieval + dataset: + type: scidocs + name: MTEB SCIDOCS + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 4.478 + - type: map_at_10 + value: 11.994 + - type: map_at_100 + value: 13.977 + - type: map_at_1000 + value: 14.295 + - type: map_at_3 + value: 8.408999999999999 + - type: map_at_5 + value: 10.024 + - type: mrr_at_1 + value: 22.1 + - type: mrr_at_10 + value: 33.526 + - type: mrr_at_100 + value: 34.577000000000005 + - type: mrr_at_1000 + value: 34.632000000000005 + - type: mrr_at_3 + value: 30.217 + - type: mrr_at_5 + value: 31.962000000000003 + - type: ndcg_at_1 + value: 22.1 + - type: ndcg_at_10 + value: 20.191 + - type: ndcg_at_100 + value: 27.954 + - type: ndcg_at_1000 + value: 33.491 + - type: ndcg_at_3 + value: 18.787000000000003 + - type: ndcg_at_5 + value: 16.378999999999998 + - type: precision_at_1 + value: 22.1 + - type: precision_at_10 + value: 10.69 + - type: precision_at_100 + value: 2.1919999999999997 + - type: precision_at_1000 + value: 0.35200000000000004 + - type: precision_at_3 + value: 17.732999999999997 + - type: precision_at_5 + value: 14.499999999999998 + - type: recall_at_1 + value: 4.478 + - type: recall_at_10 + value: 21.657 + - type: recall_at_100 + value: 44.54 + - type: recall_at_1000 + value: 71.542 + - type: recall_at_3 + value: 10.778 + - type: recall_at_5 + value: 14.687 + - task: + type: STS + dataset: + type: mteb/sickr-sts + name: MTEB SICK-R + config: default + split: test + revision: a6ea5a8cab320b040a23452cc28066d9beae2cee + metrics: + - type: cos_sim_pearson + value: 82.82325259156718 + - type: cos_sim_spearman + value: 79.2463589100662 + - type: euclidean_pearson + value: 80.48318380496771 + - type: euclidean_spearman + value: 79.34451935199979 + - type: manhattan_pearson + value: 80.39041824178759 + - type: manhattan_spearman + value: 79.23002892700211 + - task: + type: STS + dataset: + type: mteb/sts12-sts + name: MTEB STS12 + config: default + split: test + revision: a0d554a64d88156834ff5ae9920b964011b16384 + metrics: + - type: cos_sim_pearson + value: 85.74130231431258 + - type: cos_sim_spearman + value: 78.36856568042397 + - type: euclidean_pearson + value: 82.48301631890303 + - type: euclidean_spearman + value: 78.28376980722732 + - type: manhattan_pearson + value: 82.43552075450525 + - type: manhattan_spearman + value: 78.22702443947126 + - task: + type: STS + dataset: + type: mteb/sts13-sts + name: MTEB STS13 + config: default + split: test + revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca + metrics: + - type: cos_sim_pearson + value: 79.96138619461459 + - type: cos_sim_spearman + value: 81.85436343502379 + - type: euclidean_pearson + value: 81.82895226665367 + - type: euclidean_spearman + value: 82.22707349602916 + - type: manhattan_pearson + value: 81.66303369445873 + - type: manhattan_spearman + value: 82.05030197179455 + - task: + type: STS + dataset: + type: mteb/sts14-sts + name: MTEB STS14 + config: default + split: test + revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 + metrics: + - type: cos_sim_pearson + value: 80.05481244198648 + - type: cos_sim_spearman + value: 80.85052504637808 + - type: euclidean_pearson + value: 80.86728419744497 + - type: euclidean_spearman + value: 81.033786401512 + - type: manhattan_pearson + value: 80.90107531061103 + - type: manhattan_spearman + value: 81.11374116827795 + - task: + type: STS + dataset: + type: mteb/sts15-sts + name: MTEB STS15 + config: default + split: test + revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 + metrics: + - type: cos_sim_pearson + value: 84.615220756399 + - type: cos_sim_spearman + value: 86.46858500002092 + - type: euclidean_pearson + value: 86.08307800247586 + - type: euclidean_spearman + value: 86.72691443870013 + - type: manhattan_pearson + value: 85.96155594487269 + - type: manhattan_spearman + value: 86.605909505275 + - task: + type: STS + dataset: + type: mteb/sts16-sts + name: MTEB STS16 + config: default + split: test + revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 + metrics: + - type: cos_sim_pearson + value: 82.14363913634436 + - type: cos_sim_spearman + value: 84.48430226487102 + - type: euclidean_pearson + value: 83.75303424801902 + - type: euclidean_spearman + value: 84.56762380734538 + - type: manhattan_pearson + value: 83.6135447165928 + - type: manhattan_spearman + value: 84.39898212616731 + - task: + type: STS + dataset: + type: mteb/sts17-crosslingual-sts + name: MTEB STS17 (en-en) + config: en-en + split: test + revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d + metrics: + - type: cos_sim_pearson + value: 85.09909252554525 + - type: cos_sim_spearman + value: 85.70951402743276 + - type: euclidean_pearson + value: 87.1991936239908 + - type: euclidean_spearman + value: 86.07745840612071 + - type: manhattan_pearson + value: 87.25039137549952 + - type: manhattan_spearman + value: 85.99938746659761 + - task: + type: STS + dataset: + type: mteb/sts22-crosslingual-sts + name: MTEB STS22 (en) + config: en + split: test + revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 + metrics: + - type: cos_sim_pearson + value: 63.529332093413615 + - type: cos_sim_spearman + value: 65.38177340147439 + - type: euclidean_pearson + value: 66.35278011412136 + - type: euclidean_spearman + value: 65.47147267032997 + - type: manhattan_pearson + value: 66.71804682408693 + - type: manhattan_spearman + value: 65.67406521423597 + - task: + type: STS + dataset: + type: mteb/stsbenchmark-sts + name: MTEB STSBenchmark + config: default + split: test + revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 + metrics: + - type: cos_sim_pearson + value: 82.45802942885662 + - type: cos_sim_spearman + value: 84.8853341842566 + - type: euclidean_pearson + value: 84.60915021096707 + - type: euclidean_spearman + value: 85.11181242913666 + - type: manhattan_pearson + value: 84.38600521210364 + - type: manhattan_spearman + value: 84.89045417981723 + - task: + type: Reranking + dataset: + type: mteb/scidocs-reranking + name: MTEB SciDocsRR + config: default + split: test + revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab + metrics: + - type: map + value: 85.92793380635129 + - type: mrr + value: 95.85834191226348 + - task: + type: Retrieval + dataset: + type: scifact + name: MTEB SciFact + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 55.74400000000001 + - type: map_at_10 + value: 65.455 + - type: map_at_100 + value: 66.106 + - type: map_at_1000 + value: 66.129 + - type: map_at_3 + value: 62.719 + - type: map_at_5 + value: 64.441 + - type: mrr_at_1 + value: 58.667 + - type: mrr_at_10 + value: 66.776 + - type: mrr_at_100 + value: 67.363 + - type: mrr_at_1000 + value: 67.384 + - type: mrr_at_3 + value: 64.889 + - type: mrr_at_5 + value: 66.122 + - type: ndcg_at_1 + value: 58.667 + - type: ndcg_at_10 + value: 69.904 + - type: ndcg_at_100 + value: 72.807 + - type: ndcg_at_1000 + value: 73.423 + - type: ndcg_at_3 + value: 65.405 + - type: ndcg_at_5 + value: 67.86999999999999 + - type: precision_at_1 + value: 58.667 + - type: precision_at_10 + value: 9.3 + - type: precision_at_100 + value: 1.08 + - type: precision_at_1000 + value: 0.11299999999999999 + - type: precision_at_3 + value: 25.444 + - type: precision_at_5 + value: 17 + - type: recall_at_1 + value: 55.74400000000001 + - type: recall_at_10 + value: 82.122 + - type: recall_at_100 + value: 95.167 + - type: recall_at_1000 + value: 100 + - type: recall_at_3 + value: 70.14399999999999 + - type: recall_at_5 + value: 76.417 + - task: + type: PairClassification + dataset: + type: mteb/sprintduplicatequestions-pairclassification + name: MTEB SprintDuplicateQuestions + config: default + split: test + revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 + metrics: + - type: cos_sim_accuracy + value: 99.86534653465347 + - type: cos_sim_ap + value: 96.54142419791388 + - type: cos_sim_f1 + value: 93.07535641547861 + - type: cos_sim_precision + value: 94.81327800829875 + - type: cos_sim_recall + value: 91.4 + - type: dot_accuracy + value: 99.86435643564356 + - type: dot_ap + value: 96.53682260449868 + - type: dot_f1 + value: 92.98515104966718 + - type: dot_precision + value: 95.27806925498426 + - type: dot_recall + value: 90.8 + - type: euclidean_accuracy + value: 99.86336633663366 + - type: euclidean_ap + value: 96.5228676185697 + - type: euclidean_f1 + value: 92.9735234215886 + - type: euclidean_precision + value: 94.70954356846472 + - type: euclidean_recall + value: 91.3 + - type: manhattan_accuracy + value: 99.85841584158416 + - type: manhattan_ap + value: 96.50392760934032 + - type: manhattan_f1 + value: 92.84642321160581 + - type: manhattan_precision + value: 92.8928928928929 + - type: manhattan_recall + value: 92.80000000000001 + - type: max_accuracy + value: 99.86534653465347 + - type: max_ap + value: 96.54142419791388 + - type: max_f1 + value: 93.07535641547861 + - task: + type: Clustering + dataset: + type: mteb/stackexchange-clustering + name: MTEB StackExchangeClustering + config: default + split: test + revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 + metrics: + - type: v_measure + value: 61.08285408766616 + - task: + type: Clustering + dataset: + type: mteb/stackexchange-clustering-p2p + name: MTEB StackExchangeClusteringP2P + config: default + split: test + revision: 815ca46b2622cec33ccafc3735d572c266efdb44 + metrics: + - type: v_measure + value: 35.640675309010604 + - task: + type: Reranking + dataset: + type: mteb/stackoverflowdupquestions-reranking + name: MTEB StackOverflowDupQuestions + config: default + split: test + revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 + metrics: + - type: map + value: 53.20333913710715 + - type: mrr + value: 54.088813555725324 + - task: + type: Summarization + dataset: + type: mteb/summeval + name: MTEB SummEval + config: default + split: test + revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c + metrics: + - type: cos_sim_pearson + value: 30.79465221925075 + - type: cos_sim_spearman + value: 30.530816059163634 + - type: dot_pearson + value: 31.364837244718043 + - type: dot_spearman + value: 30.79726823684003 + - task: + type: Retrieval + dataset: + type: trec-covid + name: MTEB TRECCOVID + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 0.22599999999999998 + - type: map_at_10 + value: 1.735 + - type: map_at_100 + value: 8.978 + - type: map_at_1000 + value: 20.851 + - type: map_at_3 + value: 0.613 + - type: map_at_5 + value: 0.964 + - type: mrr_at_1 + value: 88 + - type: mrr_at_10 + value: 92.867 + - type: mrr_at_100 + value: 92.867 + - type: mrr_at_1000 + value: 92.867 + - type: mrr_at_3 + value: 92.667 + - type: mrr_at_5 + value: 92.667 + - type: ndcg_at_1 + value: 82 + - type: ndcg_at_10 + value: 73.164 + - type: ndcg_at_100 + value: 51.878 + - type: ndcg_at_1000 + value: 44.864 + - type: ndcg_at_3 + value: 79.184 + - type: ndcg_at_5 + value: 76.39 + - type: precision_at_1 + value: 88 + - type: precision_at_10 + value: 76.2 + - type: precision_at_100 + value: 52.459999999999994 + - type: precision_at_1000 + value: 19.692 + - type: precision_at_3 + value: 82.667 + - type: precision_at_5 + value: 80 + - type: recall_at_1 + value: 0.22599999999999998 + - type: recall_at_10 + value: 1.942 + - type: recall_at_100 + value: 12.342 + - type: recall_at_1000 + value: 41.42 + - type: recall_at_3 + value: 0.637 + - type: recall_at_5 + value: 1.034 + - task: + type: Retrieval + dataset: + type: webis-touche2020 + name: MTEB Touche2020 + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 3.567 + - type: map_at_10 + value: 13.116 + - type: map_at_100 + value: 19.39 + - type: map_at_1000 + value: 20.988 + - type: map_at_3 + value: 7.109 + - type: map_at_5 + value: 9.950000000000001 + - type: mrr_at_1 + value: 42.857 + - type: mrr_at_10 + value: 57.404999999999994 + - type: mrr_at_100 + value: 58.021 + - type: mrr_at_1000 + value: 58.021 + - type: mrr_at_3 + value: 54.762 + - type: mrr_at_5 + value: 56.19 + - type: ndcg_at_1 + value: 38.775999999999996 + - type: ndcg_at_10 + value: 30.359 + - type: ndcg_at_100 + value: 41.284 + - type: ndcg_at_1000 + value: 52.30200000000001 + - type: ndcg_at_3 + value: 36.744 + - type: ndcg_at_5 + value: 34.326 + - type: precision_at_1 + value: 42.857 + - type: precision_at_10 + value: 26.122 + - type: precision_at_100 + value: 8.082 + - type: precision_at_1000 + value: 1.559 + - type: precision_at_3 + value: 40.136 + - type: precision_at_5 + value: 35.510000000000005 + - type: recall_at_1 + value: 3.567 + - type: recall_at_10 + value: 19.045 + - type: recall_at_100 + value: 49.979 + - type: recall_at_1000 + value: 84.206 + - type: recall_at_3 + value: 8.52 + - type: recall_at_5 + value: 13.103000000000002 + - task: + type: Classification + dataset: + type: mteb/toxic_conversations_50k + name: MTEB ToxicConversationsClassification + config: default + split: test + revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c + metrics: + - type: accuracy + value: 68.8394 + - type: ap + value: 13.454399712443099 + - type: f1 + value: 53.04963076364322 + - task: + type: Classification + dataset: + type: mteb/tweet_sentiment_extraction + name: MTEB TweetSentimentExtractionClassification + config: default + split: test + revision: d604517c81ca91fe16a244d1248fc021f9ecee7a + metrics: + - type: accuracy + value: 60.546123372948514 + - type: f1 + value: 60.86952793277713 + - task: + type: Clustering + dataset: + type: mteb/twentynewsgroups-clustering + name: MTEB TwentyNewsgroupsClustering + config: default + split: test + revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 + metrics: + - type: v_measure + value: 49.10042955060234 + - task: + type: PairClassification + dataset: + type: mteb/twittersemeval2015-pairclassification + name: MTEB TwitterSemEval2015 + config: default + split: test + revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 + metrics: + - type: cos_sim_accuracy + value: 85.03308100375514 + - type: cos_sim_ap + value: 71.08284605869684 + - type: cos_sim_f1 + value: 65.42539436255494 + - type: cos_sim_precision + value: 64.14807302231237 + - type: cos_sim_recall + value: 66.75461741424802 + - type: dot_accuracy + value: 84.68736961316088 + - type: dot_ap + value: 69.20524036530992 + - type: dot_f1 + value: 63.54893953365829 + - type: dot_precision + value: 63.45698500394633 + - type: dot_recall + value: 63.641160949868066 + - type: euclidean_accuracy + value: 85.07480479227513 + - type: euclidean_ap + value: 71.14592761009864 + - type: euclidean_f1 + value: 65.43814432989691 + - type: euclidean_precision + value: 63.95465994962216 + - type: euclidean_recall + value: 66.99208443271768 + - type: manhattan_accuracy + value: 85.06288370984085 + - type: manhattan_ap + value: 71.07289742593868 + - type: manhattan_f1 + value: 65.37585421412301 + - type: manhattan_precision + value: 62.816147859922175 + - type: manhattan_recall + value: 68.15303430079156 + - type: max_accuracy + value: 85.07480479227513 + - type: max_ap + value: 71.14592761009864 + - type: max_f1 + value: 65.43814432989691 + - task: + type: PairClassification + dataset: + type: mteb/twitterurlcorpus-pairclassification + name: MTEB TwitterURLCorpus + config: default + split: test + revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf + metrics: + - type: cos_sim_accuracy + value: 87.79058485659952 + - type: cos_sim_ap + value: 83.7183187008759 + - type: cos_sim_f1 + value: 75.86921142180798 + - type: cos_sim_precision + value: 73.00683371298405 + - type: cos_sim_recall + value: 78.96519864490298 + - type: dot_accuracy + value: 87.0085768618776 + - type: dot_ap + value: 81.87467488474279 + - type: dot_f1 + value: 74.04188363990559 + - type: dot_precision + value: 72.10507114191901 + - type: dot_recall + value: 76.08561749307053 + - type: euclidean_accuracy + value: 87.8332751193387 + - type: euclidean_ap + value: 83.83585648120315 + - type: euclidean_f1 + value: 76.02582177042369 + - type: euclidean_precision + value: 73.36388371759989 + - type: euclidean_recall + value: 78.88820449645827 + - type: manhattan_accuracy + value: 87.87208444910156 + - type: manhattan_ap + value: 83.8101950642973 + - type: manhattan_f1 + value: 75.90454195535027 + - type: manhattan_precision + value: 72.44419564761039 + - type: manhattan_recall + value: 79.71204188481676 + - type: max_accuracy + value: 87.87208444910156 + - type: max_ap + value: 83.83585648120315 + - type: max_f1 + value: 76.02582177042369 +license: mit +language: +- en +base_model: +- BAAI/bge-small-en +--- + + +**Recommend switching to newest [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5), which has more reasonable similarity distribution and same method of usage.** + +

FlagEmbedding

+ + +

+

+ Model List | + FAQ | + Usage | + Evaluation | + Train | + Citation | + License +

+

+ +More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding). + + +[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md) + +FlagEmbedding focus on retrieval-augmented LLMs, consisting of following projects currently: + +- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail) +- **Dense Retrieval**: [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding), [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) +- **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) + + +## News + +- 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire: +- 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf) +- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released +- 09/15/2023: The [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released +- 09/12/2023: New models: + - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models. + - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction. + + +
+ More + + +- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning. +- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard). +- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗** +- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada: +- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset. + +
+ + +## Model List + +`bge` is short for `BAAI general embedding`. + +| Model | Language | | Description | query instruction for retrieval [1] | +|:-------------------------------|:--------:| :--------:| :--------:|:--------:| +| [LM-Cocktail](https://huggingface.co/Shitao) | English | | fine-tuned models (Llama and BGE) which can be used to reproduce the results of LM-Cocktail | | +| [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) | +| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | +| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | +| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | +| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | +| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | +| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | +| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | +| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | +| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | +| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` | +| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` | +| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` | +| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` | +| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` | + + +[1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages. + +[2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models. +For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results. + +All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI. +If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models . + + +## Frequently asked questions + +
+ 1. How to fine-tune bge embedding model? + + +Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model. +Some suggestions: +- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance. +- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity. +- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker. + + +
+ +
+ 2. The similarity score between two dissimilar sentences is higher than 0.5 + + +**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.** + +Since we finetune the models by contrastive learning with a temperature of 0.01, +the similarity distribution of the current BGE model is about in the interval \[0.6, 1\]. +So a similarity score greater than 0.5 does not indicate that the two sentences are similar. + +For downstream tasks, such as passage retrieval or semantic similarity, +**what matters is the relative order of the scores, not the absolute value.** +If you need to filter similar sentences based on a similarity threshold, +please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9). + +
+ +
+ 3. When does the query instruction need to be used + + + +For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction. +No instruction only has a slight degradation in retrieval performance compared with using instruction. +So you can generate embedding without instruction in all cases for convenience. + +For a retrieval task that uses short queries to find long related documents, +it is recommended to add instructions for these short queries. +**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.** +In all cases, the documents/passages do not need to add the instruction. + +
+ + +## Usage + +### Usage for Embedding Model + +Here are some examples for using `bge` models with +[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers). + +#### Using FlagEmbedding +``` +pip install -U FlagEmbedding +``` +If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding. + +```python +from FlagEmbedding import FlagModel +sentences_1 = ["样例数据-1", "样例数据-2"] +sentences_2 = ["样例数据-3", "样例数据-4"] +model = FlagModel('BAAI/bge-large-zh-v1.5', + query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", + use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation +embeddings_1 = model.encode(sentences_1) +embeddings_2 = model.encode(sentences_2) +similarity = embeddings_1 @ embeddings_2.T +print(similarity) + +# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query +# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction +queries = ['query_1', 'query_2'] +passages = ["样例文档-1", "样例文档-2"] +q_embeddings = model.encode_queries(queries) +p_embeddings = model.encode(passages) +scores = q_embeddings @ p_embeddings.T +``` +For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). + +By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. +You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable. + + +#### Using Sentence-Transformers + +You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net): + +``` +pip install -U sentence-transformers +``` +```python +from sentence_transformers import SentenceTransformer +sentences_1 = ["样例数据-1", "样例数据-2"] +sentences_2 = ["样例数据-3", "样例数据-4"] +model = SentenceTransformer('BAAI/bge-large-zh-v1.5') +embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) +embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) +similarity = embeddings_1 @ embeddings_2.T +print(similarity) +``` +For s2p(short query to long passage) retrieval task, +each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). +But the instruction is not needed for passages. +```python +from sentence_transformers import SentenceTransformer +queries = ['query_1', 'query_2'] +passages = ["样例文档-1", "样例文档-2"] +instruction = "为这个句子生成表示以用于检索相关文章:" + +model = SentenceTransformer('BAAI/bge-large-zh-v1.5') +q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True) +p_embeddings = model.encode(passages, normalize_embeddings=True) +scores = q_embeddings @ p_embeddings.T +``` + +#### Using Langchain + +You can use `bge` in langchain like this: +```python +from langchain.embeddings import HuggingFaceBgeEmbeddings +model_name = "BAAI/bge-large-en-v1.5" +model_kwargs = {'device': 'cuda'} +encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity +model = HuggingFaceBgeEmbeddings( + model_name=model_name, + model_kwargs=model_kwargs, + encode_kwargs=encode_kwargs, + query_instruction="为这个句子生成表示以用于检索相关文章:" +) +model.query_instruction = "为这个句子生成表示以用于检索相关文章:" +``` + + +#### Using HuggingFace Transformers + +With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding. + +```python +from transformers import AutoTokenizer, AutoModel +import torch +# Sentences we want sentence embeddings for +sentences = ["样例数据-1", "样例数据-2"] + +# Load model from HuggingFace Hub +tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5') +model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5') +model.eval() + +# Tokenize sentences +encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') +# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages) +# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') + +# Compute token embeddings +with torch.no_grad(): + model_output = model(**encoded_input) + # Perform pooling. In this case, cls pooling. + sentence_embeddings = model_output[0][:, 0] +# normalize embeddings +sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) +print("Sentence embeddings:", sentence_embeddings) +``` + +### Usage for Reranker + +Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. +You can get a relevance score by inputting query and passage to the reranker. +The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range. + + +#### Using FlagEmbedding +``` +pip install -U FlagEmbedding +``` + +Get relevance scores (higher scores indicate more relevance): +```python +from FlagEmbedding import FlagReranker +reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation + +score = reranker.compute_score(['query', 'passage']) +print(score) + +scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]) +print(scores) +``` + + +#### Using Huggingface transformers + +```python +import torch +from transformers import AutoModelForSequenceClassification, AutoTokenizer + +tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large') +model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large') +model.eval() + +pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] +with torch.no_grad(): + inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) + scores = model(**inputs, return_dict=True).logits.view(-1, ).float() + print(scores) +``` + +## Evaluation + +`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!** +For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). + +- **MTEB**: + +| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) | +|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| +| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 | +| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 | +| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 | +| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 | +| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | +| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 | +| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 | +| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 | +| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 | +| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 | +| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 | +| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 | +| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 | +| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 | +| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 | +| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 | +| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 | + + + +- **C-MTEB**: +We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks. +Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction. + +| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | +|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| +| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 | +| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 | +| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 | +| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 | +| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 | +| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 | +| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 | +| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 | +| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 | +| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 | +| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 | +| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 | +| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 | +| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 | +| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 | +| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 | + + +- **Reranking**: +See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script. + +| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg | +|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| +| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 | +| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 | +| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 | +| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 | +| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 | +| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 | +| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 | +| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 | +| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 | +| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 | + +\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks + +## Train + +### BAAI Embedding + +We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning. +**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).** +We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain). +Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned. +More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md). + + + +### BGE Reranker + +Cross-encoder will perform full-attention over the input pair, +which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model. +Therefore, it can be used to re-rank the top-k documents returned by embedding model. +We train the cross-encoder on a multilingual pair data, +The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker). +More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) + + + + +## Citation + +If you find this repository useful, please consider giving a star :star: and citation + +``` +@misc{bge_embedding, + title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, + author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff}, + year={2023}, + eprint={2309.07597}, + archivePrefix={arXiv}, + primaryClass={cs.CL} +} +``` + +## License +FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge. \ No newline at end of file