Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## ๐ Introduction
|
2 |
+
|
3 |
+
**Qwen2-7B-Instruct-Exp** and **Qwen2-1.5B-Instruct-Exp** are powerful large language models that can expand instructions with same task type but of different content.
|
4 |
+
|
5 |
+
We fine-tuned **Qwen2-7B-Instruct** and **Qwen2-1.5B-Instruct-Exp** to obtain **Qwen2-7B-Instruct-Exp** and **Qwen2-1.5B-Instruct-Exp**.
|
6 |
+
We sampled the dataset from OpenHermes and the LCCD dataset, ensuring a balanced task distribution. For training set annotations, we used Qwen-max with incorporated our handwritten examples as in-context prompts.
|
7 |
+
|
8 |
+
#### Example Input
|
9 |
+
> Plan an in depth tour itinerary of France that includes Paris, Lyon, and Provence.
|
10 |
+
#### Example Output 1
|
11 |
+
> Describe a classic road trip itinerary along the California coastline in the United States.
|
12 |
+
#### Example Output 2
|
13 |
+
> Create a holiday plan that combines cultural experiences in Bangkok, Thailand, with beach relaxation in Phuket.
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
## ๐ Quick Start
|
18 |
+
|
19 |
+
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
|
20 |
+
|
21 |
+
```python
|
22 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
23 |
+
device = "cuda" # the device to load the model onto
|
24 |
+
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
"alibaba-pai/Qwen2-1.5B-Instruct-Exp",
|
27 |
+
torch_dtype="auto",
|
28 |
+
device_map="auto"
|
29 |
+
)
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained("alibaba-pai/Qwen2-1.5B-Instruct-Exp")
|
31 |
+
|
32 |
+
prompt = "Give me a short introduction to large language model."
|
33 |
+
messages = [
|
34 |
+
{"role": "user", "content": prompt}
|
35 |
+
]
|
36 |
+
text = tokenizer.apply_chat_template(
|
37 |
+
messages,
|
38 |
+
tokenize=False,
|
39 |
+
add_generation_prompt=True
|
40 |
+
)
|
41 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
42 |
+
|
43 |
+
generated_ids = model.generate(
|
44 |
+
model_inputs.input_ids,
|
45 |
+
max_new_tokens=2048๏ผ
|
46 |
+
eos_token_id=151645๏ผ
|
47 |
+
)
|
48 |
+
generated_ids = [
|
49 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
50 |
+
]
|
51 |
+
|
52 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
53 |
+
```
|
54 |
+
|
55 |
+
## ๐ Evaluation
|
56 |
+
|
57 |
+
We evaluated the data augmentation effect of our model on the Elementary Math and Implicature datasets.
|
58 |
+
|
59 |
+
| Model | Math | Impl. |
|
60 |
+
|--------------------------------|--------|--------|
|
61 |
+
| Qwen2-1.5B-Instruct | 57.90% | 28.96% |
|
62 |
+
| + Qwen2-1.5B-Instruct-Exp | 59.15% | 31.22% |
|
63 |
+
| + Qwen2-7B-Instruct-Exp | 58.32% | 39.37% |
|
64 |
+
| Qwen2-7B-Instruct | 71.40% | 28.85% |
|
65 |
+
| + Qwen2-1.5B-Instruct-Exp | 73.90% | 35.41% |
|
66 |
+
| + Qwen2-7B-Instruct-Exp | 72.53% | 32.92% |
|