wav2vec2-large-xlsr-mecita-coraa-portuguese-aug-random-all-03
This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1357
- Wer: 0.0844
- Cer: 0.0268
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
2.883 | 1.0 | 514 | 2.5884 | 0.9955 | 0.9943 |
0.9481 | 2.0 | 1029 | 0.2560 | 0.1474 | 0.0436 |
0.742 | 3.0 | 1543 | 0.1802 | 0.1098 | 0.0340 |
0.625 | 4.0 | 2058 | 0.1590 | 0.0975 | 0.0308 |
0.6001 | 5.0 | 2572 | 0.1486 | 0.0887 | 0.0292 |
0.5208 | 6.0 | 3087 | 0.1424 | 0.0918 | 0.0284 |
0.4857 | 7.0 | 3601 | 0.1357 | 0.0844 | 0.0268 |
0.4458 | 8.0 | 4116 | 0.1375 | 0.0882 | 0.0317 |
0.4158 | 9.0 | 4630 | 0.1411 | 0.0839 | 0.0303 |
0.3915 | 10.0 | 5145 | 0.1457 | 0.0915 | 0.0319 |
0.3898 | 11.0 | 5659 | 0.1464 | 0.0870 | 0.0310 |
0.3562 | 12.0 | 6174 | 0.1500 | 0.0875 | 0.0314 |
0.3619 | 13.0 | 6688 | 0.1523 | 0.0877 | 0.0313 |
0.3283 | 14.0 | 7203 | 0.1473 | 0.0856 | 0.0290 |
0.3196 | 15.0 | 7717 | 0.1443 | 0.0844 | 0.0299 |
0.3165 | 16.0 | 8232 | 0.1413 | 0.0813 | 0.0283 |
0.2954 | 17.0 | 8746 | 0.1451 | 0.0825 | 0.0283 |
0.293 | 18.0 | 9261 | 0.1539 | 0.0822 | 0.0286 |
0.2821 | 19.0 | 9775 | 0.1552 | 0.0844 | 0.0296 |
0.2893 | 20.0 | 10290 | 0.1484 | 0.0820 | 0.0285 |
0.2609 | 21.0 | 10804 | 0.1636 | 0.0851 | 0.0307 |
0.2526 | 22.0 | 11319 | 0.1520 | 0.0856 | 0.0292 |
0.2571 | 23.0 | 11833 | 0.1449 | 0.0851 | 0.0291 |
0.2486 | 24.0 | 12348 | 0.1574 | 0.0865 | 0.0307 |
0.2501 | 25.0 | 12862 | 0.1490 | 0.0856 | 0.0295 |
0.2525 | 26.0 | 13377 | 0.1508 | 0.0827 | 0.0294 |
0.2452 | 27.0 | 13891 | 0.1511 | 0.0808 | 0.0290 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.13.3
- Downloads last month
- 24