wav2vec2-xlsr-1b-mecita-portuguese-all-text-protecao_aos_pandas

This model is a fine-tuned version of jonatasgrosman/wav2vec2-xls-r-1b-portuguese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1772
  • Wer: 0.1114
  • Cer: 0.0303

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
13.7229 0.93 7 4.8592 1.0 0.9996
13.7229 2.0 15 3.0023 1.0 1.0
13.7229 2.93 22 2.9290 1.0 1.0
13.7229 4.0 30 2.9842 1.0 1.0
13.7229 4.93 37 2.8453 1.0 1.0
13.7229 6.0 45 2.8120 1.0 1.0
13.7229 6.93 52 2.8162 1.0 1.0
13.7229 8.0 60 2.7843 1.0 1.0
13.7229 8.93 67 2.7823 1.0 1.0
13.7229 10.0 75 2.7434 1.0 1.0
13.7229 10.93 82 2.6364 1.0 1.0
13.7229 12.0 90 2.3797 0.9876 0.9861
13.7229 12.93 97 1.9516 0.9950 0.9771
3.3197 14.0 105 1.5396 1.0 0.7474
3.3197 14.93 112 1.1038 0.9950 0.4273
3.3197 16.0 120 0.6536 0.6733 0.1691
3.3197 16.93 127 0.4087 0.3218 0.0729
3.3197 18.0 135 0.3119 0.2252 0.0561
3.3197 18.93 142 0.2720 0.1757 0.0479
3.3197 20.0 150 0.2405 0.1584 0.0413
3.3197 20.93 157 0.2365 0.1584 0.0409
3.3197 22.0 165 0.2281 0.1510 0.0397
3.3197 22.93 172 0.1989 0.1361 0.0360
3.3197 24.0 180 0.2051 0.1287 0.0360
3.3197 24.93 187 0.2265 0.1287 0.0356
3.3197 26.0 195 0.2203 0.1287 0.0377
0.5589 26.93 202 0.2181 0.1213 0.0340
0.5589 28.0 210 0.2006 0.1238 0.0336
0.5589 28.93 217 0.1860 0.1213 0.0332
0.5589 30.0 225 0.1772 0.1114 0.0303
0.5589 30.93 232 0.1914 0.1238 0.0323
0.5589 32.0 240 0.1997 0.1238 0.0323
0.5589 32.93 247 0.1947 0.1262 0.0340
0.5589 34.0 255 0.2056 0.1213 0.0327
0.5589 34.93 262 0.1985 0.1213 0.0332
0.5589 36.0 270 0.2016 0.1213 0.0327
0.5589 36.93 277 0.1941 0.1139 0.0311
0.5589 38.0 285 0.1824 0.1238 0.0319
0.5589 38.93 292 0.1822 0.1089 0.0295
0.1503 40.0 300 0.1969 0.1163 0.0311
0.1503 40.93 307 0.1996 0.1163 0.0295
0.1503 42.0 315 0.1880 0.1089 0.0295
0.1503 42.93 322 0.2017 0.1312 0.0344
0.1503 44.0 330 0.1914 0.1163 0.0327
0.1503 44.93 337 0.1935 0.1163 0.0332
0.1503 46.0 345 0.1967 0.1139 0.0319
0.1503 46.93 352 0.1913 0.1064 0.0299
0.1503 48.0 360 0.1994 0.1114 0.0303
0.1503 48.93 367 0.1883 0.1089 0.0291
0.1503 50.0 375 0.1881 0.1139 0.0303

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.17.0
  • Tokenizers 0.13.3
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.