File size: 2,041 Bytes
6bddc07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: IDAT_red_aug_506_novel_Wav2Vec
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# IDAT_red_aug_506_novel_Wav2Vec

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1257
- Accuracy: 0.97

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.561         | 1.0   | 100  | 0.6355          | 0.6675   |
| 0.6864        | 2.0   | 200  | 0.6586          | 0.5      |
| 0.4323        | 3.0   | 300  | 0.5179          | 0.7925   |
| 0.5266        | 4.0   | 400  | 0.5422          | 0.79     |
| 0.4681        | 5.0   | 500  | 0.4668          | 0.8125   |
| 0.474         | 6.0   | 600  | 0.3918          | 0.8275   |
| 0.3943        | 7.0   | 700  | 0.3704          | 0.85     |
| 0.3817        | 8.0   | 800  | 0.2723          | 0.9025   |
| 0.222         | 9.0   | 900  | 0.1694          | 0.95     |
| 0.2053        | 10.0  | 1000 | 0.1257          | 0.97     |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.13.3