--- license: other library_name: peft tags: - trl - sft - generated_from_trainer base_model: taide/TAIDE-LX-7B-Chat model-index: - name: ROE_QA_TAIDE-LX-7B-Chat_Q100_80_20_V6 results: [] --- # ROE_QA_TAIDE-LX-7B-Chat_Q100_80_20_V6 This model is a fine-tuned version of [taide/TAIDE-LX-7B-Chat](https://huggingface.co/taide/TAIDE-LX-7B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.8628 | 0.0321 | 100 | 3.4692 | | 4.6437 | 0.0643 | 200 | 3.2308 | | 3.8154 | 0.0964 | 300 | 2.8144 | | 3.3006 | 0.1285 | 400 | 2.5033 | | 2.953 | 0.1607 | 500 | 2.2690 | | 2.2844 | 0.1928 | 600 | 1.9550 | | 2.134 | 0.2249 | 700 | 1.7888 | | 1.8182 | 0.2571 | 800 | 1.6310 | | 1.6776 | 0.2892 | 900 | 1.5062 | | 1.6317 | 0.3213 | 1000 | 1.4026 | | 1.6311 | 0.3535 | 1100 | 1.2253 | | 1.1003 | 0.3856 | 1200 | 1.0703 | | 1.2014 | 0.4177 | 1300 | 1.0672 | | 0.9489 | 0.4499 | 1400 | 0.9135 | | 1.0068 | 0.4820 | 1500 | 0.8950 | | 1.0342 | 0.5141 | 1600 | 0.8074 | | 0.9713 | 0.5463 | 1700 | 0.7767 | | 0.9598 | 0.5784 | 1800 | 0.6995 | | 0.9357 | 0.6105 | 1900 | 0.6643 | | 0.8298 | 0.6427 | 2000 | 0.6456 | | 0.8803 | 0.6748 | 2100 | 0.6164 | | 0.8899 | 0.7069 | 2200 | 0.5867 | | 0.7877 | 0.7391 | 2300 | 0.5748 | | 0.7792 | 0.7712 | 2400 | 0.5513 | | 0.8387 | 0.8033 | 2500 | 0.5267 | | 0.8625 | 0.8355 | 2600 | 0.5111 | | 0.8514 | 0.8676 | 2700 | 0.4992 | | 0.762 | 0.8997 | 2800 | 0.4881 | | 0.779 | 0.9319 | 2900 | 0.4840 | | 0.8938 | 0.9640 | 3000 | 0.4676 | | 0.7007 | 0.9961 | 3100 | 0.4668 | | 0.7006 | 1.0283 | 3200 | 0.4500 | | 0.6622 | 1.0604 | 3300 | 0.4383 | | 0.6724 | 1.0925 | 3400 | 0.4404 | | 0.6551 | 1.1247 | 3500 | 0.4372 | | 0.6395 | 1.1568 | 3600 | 0.4273 | | 0.6317 | 1.1889 | 3700 | 0.4217 | | 0.6683 | 1.2211 | 3800 | 0.4218 | | 0.6987 | 1.2532 | 3900 | 0.4136 | | 0.7309 | 1.2853 | 4000 | 0.4151 | | 0.6192 | 1.3175 | 4100 | 0.4092 | | 0.6013 | 1.3496 | 4200 | 0.4109 | | 0.6138 | 1.3817 | 4300 | 0.4069 | | 0.6224 | 1.4139 | 4400 | 0.4001 | | 0.6414 | 1.4460 | 4500 | 0.3942 | | 0.6234 | 1.4781 | 4600 | 0.3949 | | 0.6365 | 1.5103 | 4700 | 0.3914 | | 0.6602 | 1.5424 | 4800 | 0.3908 | | 0.6646 | 1.5746 | 4900 | 0.3916 | | 0.6295 | 1.6067 | 5000 | 0.3832 | | 0.6379 | 1.6388 | 5100 | 0.3828 | | 0.6544 | 1.6710 | 5200 | 0.3836 | | 0.6224 | 1.7031 | 5300 | 0.3905 | | 0.5892 | 1.7352 | 5400 | 0.3785 | | 0.5985 | 1.7674 | 5500 | 0.3794 | | 0.5776 | 1.7995 | 5600 | 0.3751 | | 0.5799 | 1.8316 | 5700 | 0.3745 | | 0.6247 | 1.8638 | 5800 | 0.3742 | | 0.5724 | 1.8959 | 5900 | 0.3716 | | 0.627 | 1.9280 | 6000 | 0.3750 | | 0.566 | 1.9602 | 6100 | 0.3720 | | 0.5754 | 1.9923 | 6200 | 0.3706 | | 0.3561 | 2.0244 | 6300 | 0.3685 | | 0.4468 | 2.0566 | 6400 | 0.3663 | | 0.392 | 2.0887 | 6500 | 0.3669 | | 0.4049 | 2.1208 | 6600 | 0.3659 | | 0.3967 | 2.1530 | 6700 | 0.3649 | | 0.418 | 2.1851 | 6800 | 0.3662 | | 0.4973 | 2.2172 | 6900 | 0.3630 | | 0.3685 | 2.2494 | 7000 | 0.3627 | | 0.3967 | 2.2815 | 7100 | 0.3618 | | 0.3921 | 2.3136 | 7200 | 0.3580 | | 0.3905 | 2.3458 | 7300 | 0.3595 | | 0.3888 | 2.3779 | 7400 | 0.3574 | | 0.4403 | 2.4100 | 7500 | 0.3571 | | 0.4343 | 2.4422 | 7600 | 0.3574 | | 0.4088 | 2.4743 | 7700 | 0.3549 | | 0.3924 | 2.5064 | 7800 | 0.3560 | | 0.4383 | 2.5386 | 7900 | 0.3540 | | 0.3786 | 2.5707 | 8000 | 0.3525 | | 0.3779 | 2.6028 | 8100 | 0.3518 | | 0.4555 | 2.6350 | 8200 | 0.3519 | | 0.3813 | 2.6671 | 8300 | 0.3497 | | 0.375 | 2.6992 | 8400 | 0.3505 | | 0.3889 | 2.7314 | 8500 | 0.3493 | | 0.3524 | 2.7635 | 8600 | 0.3469 | | 0.431 | 2.7956 | 8700 | 0.3480 | | 0.4185 | 2.8278 | 8800 | 0.3471 | | 0.378 | 2.8599 | 8900 | 0.3487 | | 0.3978 | 2.8920 | 9000 | 0.3457 | | 0.421 | 2.9242 | 9100 | 0.3461 | | 0.3691 | 2.9563 | 9200 | 0.3443 | | 0.4019 | 2.9884 | 9300 | 0.3446 | | 0.2392 | 3.0206 | 9400 | 0.3473 | | 0.2213 | 3.0527 | 9500 | 0.3443 | | 0.2189 | 3.0848 | 9600 | 0.3437 | | 0.2363 | 3.1170 | 9700 | 0.3442 | ### Framework versions - PEFT 0.12.1.dev0 - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1