Text Generation
Transformers
PyTorch
English
olmo2
conversational
Inference Endpoints
File size: 7,888 Bytes
18e39b5
fc15c4f
 
 
 
 
cc7dca8
fc15c4f
cc7dca8
 
18e39b5
 
b3617b9
18e39b5
fc15c4f
18e39b5
e43571d
fc15c4f
89fa354
18e39b5
fc15c4f
 
 
18e39b5
 
89fa354
fc15c4f
 
 
 
cc7dca8
d274436
18e39b5
 
 
fc15c4f
18e39b5
fc15c4f
 
 
 
18e39b5
fc15c4f
18e39b5
fc15c4f
 
 
 
 
89fa354
fc15c4f
18e39b5
da1f71f
 
 
 
 
 
 
fc15c4f
18e39b5
fc15c4f
18e39b5
fc15c4f
 
 
18e39b5
fc15c4f
 
18e39b5
fc15c4f
18e39b5
fc15c4f
 
 
 
 
 
 
 
 
 
 
 
18e39b5
fc15c4f
18e39b5
fc15c4f
 
 
 
 
18e39b5
fc15c4f
18e39b5
89fa354
fc15c4f
18e39b5
 
fc15c4f
18e39b5
89fa354
 
 
 
 
e9edbea
89fa354
 
 
e9edbea
89fa354
 
e9edbea
89fa354
 
 
 
 
 
e9edbea
89fa354
18e39b5
fc15c4f
18e39b5
fc15c4f
18e39b5
fc15c4f
 
 
 
 
 
 
 
18e39b5
fc15c4f
18e39b5
89fa354
 
fc15c4f
89fa354
18e39b5
fc15c4f
18e39b5
766bd87
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
base_model:
- allenai/OLMo-2-1124-13B-SFT
library_name: transformers
datasets:
- allenai/olmo-2-1124-13b-preference-mix
---

<img alt="OLMo Logo" src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/olmo2/olmo.png" width="242px">

# OLMo-2-1124-13B-DPO

OLMo-2 13B DPO November 2024 is post-trained variant of the [OLMo-2 13B November 2024](https://huggingface.co/allenai/OLMo2-13B-1124) model, which has undergone supervised finetuning on an OLMo-specific variant of the [Tülu 3 dataset](allenai/tulu-3-sft-olmo-2-mixture) and further DPO training on [this dataset](https://huggingface.co/datasets/allenai/olmo-2-1124-13b-preference-mix).
Tülu 3 is designed for state-of-the-art performance on a diversity of tasks in addition to chat, such as MATH, GSM8K, and IFEval.
Check out OLMo 2 paper (forthcoming) or [Tülu 3 paper](https://arxiv.org/abs/2411.15124) for more details!

OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the science of language models. 
These models are trained on the Dolma dataset. We are releasing all code, checkpoints, logs (coming soon), and associated training details. 
The core models released in this batch include the following:


| **Stage**           | **OLMo 2 7B**                                                                                          | **OLMo 2 13B**                                                                                         |
|----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| **Base Model**       | [allenai/OLMo2-7B-1124](https://huggingface.co/allenai/OLMo2-7B-1124)                                | [allenai/OLMo-2-13B-1124](https://huggingface.co/allenai/OLMo-2-13B-1124)                             |
| **SFT**              | [allenai/OLMo-2-1124-7B-SFT](https://huggingface.co/allenai/OLMo-2-1124-7B-SFT)                | [allenai/OLMo-2-1124-13B-SFT](https://huggingface.co/allenai/OLMo-2-1124-13B-SFT)              |
| **DPO**              | [allenai/OLMo-2-1124-7B-DPO](https://huggingface.co/allenai/OLMo-2-1124-7B-DPO)                | [allenai/OLMo-2-1124-13B-DPO](https://huggingface.co/allenai/OLMo-2-1124-13B-DPO)              |
| **Final Models (RLVR)** | [allenai/OLMo-2-1124-7B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-7B-Instruct)                        | [allenai/OLMo-2-1124-13B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-13B-Instruct)                      |
| **Reward Model (RM)**| [allenai/OLMo-2-1124-7B-RM](https://huggingface.co/allenai/OLMo-2-1124-7B-RM)                                                     | (Same as 7B)                                                     |



## Model description

- **Model type:** A model trained on a mix of publicly available, synthetic and human-created datasets.
- **Language(s) (NLP):** Primarily English
- **License:** Apache 2.0
- **Finetuned from model:** allenai/OLMo-2-13B-1124-SFT

### Model Sources

- **Project Page:** https://allenai.org/olmo
- **Repositories:** 
    - Core repo (training, inference, fine-tuning etc.): https://github.com/allenai/OLMo
    - Evaluation code: https://github.com/allenai/olmes
    - Further fine-tuning code: https://github.com/allenai/open-instruct
- **Paper:** Coming soon!
- **Demo:** https://playground.allenai.org/

## Installation

OLMo 2 will be supported in the next version of Transformers, and you need to install it from the main branch using:
```bash
pip install --upgrade git+https://github.com/huggingface/transformers.git
```

## Using the model

### Loading with HuggingFace

To load the model with HuggingFace, use the following snippet:
```
from transformers import AutoModelForCausalLM

olmo_model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-1124-13B-DPO")
```

### Chat template

The chat template for our models is formatted as:
```
<|endoftext|><|user|>\nHow are you doing?\n<|assistant|>\nI'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
```
Or with new lines expanded:
```
<|endoftext|><|user|>
How are you doing?
<|assistant|>
I'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
```
It is embedded within the tokenizer as well, for `tokenizer.apply_chat_template`.

### System prompt

In Ai2 demos, we use this system prompt by default:
```
You are OLMo 2, a helpful and harmless AI Assistant built by the Allen Institute for AI.
```
The model has not been trained with a specific system prompt in mind.

### Bias, Risks, and Limitations

The OLMo 2 models have limited safety training, but are not deployed automatically with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). 
See the Falcon 180B model card for an example of this.


## Performance

| Model | Average | AlpacaEval | BBH | DROP | GSM8k | IFEval | MATH | MMLU | Safety | PopQA | TruthQA |
|-------|---------|------------|-----|------|--------|---------|------|-------|---------|-------|---------|
| **Open weights models** |
| Gemma-2-9B-it | 51.9 | 43.7 | 2.5 | 58.8 | 79.7 | 69.9 | 29.8 | 69.1 | 75.5 | 28.3 | 61.4 |
| Ministral-8B-Instruct | 52.1 | 31.4 | 56.2 | 56.2 | 80.0 | 56.4 | 40.0 | 68.5 | 56.2 | 20.2 | 55.5 |
| Mistral-Nemo-Instruct-2407 | 50.9 | 45.8 | 54.6 | 23.6 | 81.4 | 64.5 | 31.9 | 70.0 | 52.7 | 26.9 | 57.7 |
| Qwen-2.5-7B-Instruct | 57.1 | 29.7 | 25.3 | 54.4 | 83.8 | 74.7 | 69.9 | 76.6 | 75.0 | 18.1 | 63.1 |
| Llama-3.1-8B-Instruct | 58.9 | 25.8 | 69.7 | 61.7 | 83.4 | 80.6 | 42.5 | 71.3 | 70.2 | 28.4 | 55.1 |
| Tülu 3 8B | 60.4 | 34.0 | 66.0 | 62.6 | 87.6 | 82.4 | 43.7 | 68.2 | 75.4 | 29.1 | 55.0 |
| Qwen-2.5-14B-Instruct | 60.8 | 34.6 | 34.0 | 50.5 | 83.9 | 82.4 | 70.6 | 81.1 | 79.3 | 21.1 | 70.8 |
| **Fully open models** |
| OLMo-7B-Instruct | 28.2 | 5.2 | 35.3 | 30.7 | 14.3 | 32.2 | 2.1 | 46.3 | 54.0 | 17.1 | 44.5 |
| OLMo-7B-0424-Instruct | 33.1 | 8.5 | 34.4 | 47.9 | 23.2 | 39.2 | 5.2 | 48.9 | 49.3 | 18.9 | 55.2 |
| OLMoE-1B-7B-0924-Instruct | 35.5 | 8.5 | 37.2 | 34.3 | 47.2 | 46.2 | 8.4 | 51.6 | 51.6 | 20.6 | 49.1 |
| MAP-Neo-7B-Instruct | 42.9 | 17.6 | 26.4 | 48.2 | 69.4 | 35.9 | 31.5 | 56.5 | 73.7 | 18.4 | 51.6 |
| *OLMo-2-7B-DPO* | 55.0 | 29.9 | 47.0 | 58.8 | 82.4 | 74.5 | 31.2 | 63.4 | 81.5 | 24.5 | 57.2 |
| *OLMo-2-7B-SFT* | 50.0 | 9.3 | 50.7 | 58.2 | 71.2 | 68.0 | 25.1 | 62.0 | 82.4 | 25.0 | 47.8 |
| *OLMo-2-13B-DPO* | 61.0 | 38.3 | 58.5 | 71.9 | 84.2 | 80.6 | 35.0 | 68.5 | 80.6 | 28.9 | 63.9 |
| *OLMo-2-13B-SFT* | 55.7 | 12.0 | 58.8 | 71.8 | 75.7 | 71.5 | 31.1 | 67.3 | 82.8 | 29.3 | 56.2 |
| **OLMo-2-7B-1124–Instruct** | 55.7 | 31.0 | 48.5 | 58.9 | 85.2 | 75.6 | 31.3 | 63.9 | 81.2 | 24.6 | 56.3 |
| **OLMo-2-13B-1124-Instruct** | 61.4 | 37.5 | 58.4 | 72.1 | 87.4 | 80.4 | 39.7 | 68.6 | 77.5 | 28.8 | 63.9 |

## Hyperparameters

Note we use a length-normalized variant of DPO for training.

DPO:
- **Learning Rate**: 8E-7 (7B, 13B)
- **Beta**: 5
- **Effective Batch Size:** 128 (7B, 13B)
- **Max. Sequence Length:** 2048
- **Learning Rate Schedule:** Linear
- **LR Warmup Ratio:** 0.1
- **Num. Epochs:** 1

## License and use

OLMo 2 is licensed under the Apache 2.0 license.
OLMo 2 is intended for research and educational use.
For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).
This model has been fine-tuned using a dataset mix with outputs generated from third party models and are subject to additional terms: [Gemma Terms of Use](https://ai.google.dev/gemma/terms).

## Citation

A technical manuscript is forthcoming!