File size: 13,090 Bytes
b39dcfe
 
 
 
 
 
fd7c1ca
b39dcfe
 
 
 
 
 
 
 
 
 
 
 
3da0e67
b39dcfe
5f41acd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b39dcfe
 
3da0e67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b39dcfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: EleutherAI/gpt-neo-2.7B
model-index:
- name: output
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# output

## Model description

This model is a fine-tuned version of [EleutherAI/gpt-neo-2.7B](https://huggingface.co/EleutherAI/gpt-neo-2.7B) on the Lila-IID-train/dev set from the [Lila dataset](https://github.com/allenai/Lila).

## Usage

Bhaskara was trained with the following format:

~~~
Question: ...

Answer: ...

Program:
```python
...
```
~~~

It will perform best if queried in this way.

## Intended uses & limitations

If you use this model, please cite our work.
```
@INPROCEEDINGS{Mishra2022Lila,
  author = {
    Swaroop Mishra 
      and Matthew Finlayson 
      and Pan Lu 
      and Leonard Tang 
      and Sean Welleck 
      and Chitta Baral 
      and Tanmay Rajpurohit 
      and Oyvind Tafjord 
      and Ashish Sabharwal 
      and Peter Clark 
      and Ashwin Kalyan},
  title = {Lila: A Unified Benchmark for Mathematical Reasoning},
  booktitle = {Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
  year = {2022}
}
```

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| No log        | 0.06  | 100   | 0.7930          | 0.8214   |
| No log        | 0.11  | 200   | 0.7544          | 0.8290   |
| No log        | 0.17  | 300   | 0.7358          | 0.8328   |
| No log        | 0.23  | 400   | 0.7192          | 0.8357   |
| 0.8156        | 0.28  | 500   | 0.7012          | 0.8397   |
| 0.8156        | 0.34  | 600   | 0.6904          | 0.8419   |
| 0.8156        | 0.4   | 700   | 0.6802          | 0.8440   |
| 0.8156        | 0.45  | 800   | 0.6670          | 0.8465   |
| 0.8156        | 0.51  | 900   | 0.6572          | 0.8486   |
| 0.7219        | 0.57  | 1000  | 0.6499          | 0.8500   |
| 0.7219        | 0.62  | 1100  | 0.6411          | 0.8522   |
| 0.7219        | 0.68  | 1200  | 0.6343          | 0.8537   |
| 0.7219        | 0.74  | 1300  | 0.6299          | 0.8546   |
| 0.7219        | 0.79  | 1400  | 0.6221          | 0.8561   |
| 0.662         | 0.85  | 1500  | 0.6157          | 0.8574   |
| 0.662         | 0.91  | 1600  | 0.6138          | 0.8579   |
| 0.662         | 0.96  | 1700  | 0.6055          | 0.8595   |
| 0.662         | 1.02  | 1800  | 0.6143          | 0.8598   |
| 0.662         | 1.08  | 1900  | 0.6191          | 0.8599   |
| 0.5707        | 1.14  | 2000  | 0.6118          | 0.8607   |
| 0.5707        | 1.19  | 2100  | 0.6123          | 0.8611   |
| 0.5707        | 1.25  | 2200  | 0.6089          | 0.8617   |
| 0.5707        | 1.31  | 2300  | 0.6064          | 0.8619   |
| 0.5707        | 1.36  | 2400  | 0.6079          | 0.8625   |
| 0.4923        | 1.42  | 2500  | 0.6040          | 0.8625   |
| 0.4923        | 1.48  | 2600  | 0.6030          | 0.8630   |
| 0.4923        | 1.53  | 2700  | 0.6021          | 0.8636   |
| 0.4923        | 1.59  | 2800  | 0.6001          | 0.8643   |
| 0.4923        | 1.65  | 2900  | 0.5981          | 0.8644   |
| 0.4909        | 1.7   | 3000  | 0.5942          | 0.8648   |
| 0.4909        | 1.76  | 3100  | 0.5918          | 0.8650   |
| 0.4909        | 1.82  | 3200  | 0.5923          | 0.8659   |
| 0.4909        | 1.87  | 3300  | 0.5884          | 0.8664   |
| 0.4909        | 1.93  | 3400  | 0.5884          | 0.8663   |
| 0.4964        | 1.99  | 3500  | 0.5903          | 0.8669   |
| 0.4964        | 2.04  | 3600  | 0.6421          | 0.8655   |
| 0.4964        | 2.1   | 3700  | 0.6401          | 0.8651   |
| 0.4964        | 2.16  | 3800  | 0.6411          | 0.8649   |
| 0.4964        | 2.21  | 3900  | 0.6387          | 0.8645   |
| 0.345         | 2.27  | 4000  | 0.6362          | 0.8654   |
| 0.345         | 2.33  | 4100  | 0.6362          | 0.8654   |
| 0.345         | 2.38  | 4200  | 0.6362          | 0.8654   |
| 0.345         | 2.44  | 4300  | 0.6357          | 0.8655   |
| 0.345         | 2.5   | 4400  | 0.6362          | 0.8656   |
| 0.3463        | 2.55  | 4500  | 0.6377          | 0.8658   |
| 0.3463        | 2.61  | 4600  | 0.6357          | 0.8660   |
| 0.3463        | 2.67  | 4700  | 0.6294          | 0.8665   |
| 0.3463        | 2.72  | 4800  | 0.6333          | 0.8665   |
| 0.3463        | 2.78  | 4900  | 0.6362          | 0.8662   |
| 0.3508        | 2.84  | 5000  | 0.6357          | 0.8666   |
| 0.3508        | 2.89  | 5100  | 0.6299          | 0.8673   |
| 0.3508        | 2.95  | 5200  | 0.6313          | 0.8668   |
| 0.3508        | 3.01  | 5300  | 0.7188          | 0.8646   |
| 0.3508        | 3.06  | 5400  | 0.7017          | 0.8656   |
| 0.295         | 3.12  | 5500  | 0.6982          | 0.8653   |
| 0.295         | 3.18  | 5600  | 0.7031          | 0.8655   |
| 0.295         | 3.23  | 5700  | 0.6992          | 0.8651   |
| 0.295         | 3.29  | 5800  | 0.6997          | 0.8653   |
| 0.295         | 3.35  | 5900  | 0.7041          | 0.8651   |
| 0.2348        | 3.41  | 6000  | 0.7075          | 0.8649   |
| 0.2348        | 3.46  | 6100  | 0.6992          | 0.8650   |
| 0.2348        | 3.52  | 6200  | 0.7065          | 0.8647   |
| 0.2348        | 3.58  | 6300  | 0.6997          | 0.8652   |
| 0.2348        | 3.63  | 6400  | 0.7026          | 0.8651   |
| 0.2411        | 3.69  | 6500  | 0.7046          | 0.8656   |
| 0.2411        | 3.75  | 6600  | 0.7007          | 0.8655   |
| 0.2411        | 3.8   | 6700  | 0.7026          | 0.8651   |
| 0.2411        | 3.86  | 6800  | 0.7031          | 0.8655   |
| 0.2411        | 3.92  | 6900  | 0.7012          | 0.8658   |
| 0.251         | 3.97  | 7000  | 0.7051          | 0.8656   |
| 0.251         | 4.03  | 7100  | 0.7607          | 0.8650   |
| 0.251         | 4.09  | 7200  | 0.7632          | 0.8656   |
| 0.251         | 4.14  | 7300  | 0.7588          | 0.8655   |
| 0.251         | 4.2   | 7400  | 0.7578          | 0.8651   |
| 0.1797        | 4.26  | 7500  | 0.7710          | 0.8645   |
| 0.1797        | 4.31  | 7600  | 0.7627          | 0.8648   |
| 0.1797        | 4.37  | 7700  | 0.7583          | 0.8650   |
| 0.1797        | 4.43  | 7800  | 0.7646          | 0.8649   |
| 0.1797        | 4.48  | 7900  | 0.7598          | 0.8646   |
| 0.1784        | 4.54  | 8000  | 0.7656          | 0.8650   |
| 0.1784        | 4.6   | 8100  | 0.7617          | 0.8648   |
| 0.1784        | 4.65  | 8200  | 0.7573          | 0.8651   |
| 0.1784        | 4.71  | 8300  | 0.7671          | 0.8648   |
| 0.1784        | 4.77  | 8400  | 0.7563          | 0.8651   |
| 0.1827        | 4.82  | 8500  | 0.7651          | 0.8649   |
| 0.1827        | 4.88  | 8600  | 0.7637          | 0.8650   |
| 0.1827        | 4.94  | 8700  | 0.7607          | 0.8654   |
| 0.1827        | 4.99  | 8800  | 0.7607          | 0.8650   |
| 0.1827        | 5.05  | 8900  | 0.8149          | 0.8646   |
| 0.167         | 5.11  | 9000  | 0.8081          | 0.8648   |
| 0.167         | 5.16  | 9100  | 0.8184          | 0.8644   |
| 0.167         | 5.22  | 9200  | 0.8140          | 0.8647   |
| 0.167         | 5.28  | 9300  | 0.8169          | 0.8644   |
| 0.167         | 5.33  | 9400  | 0.8120          | 0.8645   |
| 0.1371        | 5.39  | 9500  | 0.8154          | 0.8643   |
| 0.1371        | 5.45  | 9600  | 0.8179          | 0.8642   |
| 0.1371        | 5.51  | 9700  | 0.8154          | 0.8643   |
| 0.1371        | 5.56  | 9800  | 0.8120          | 0.8645   |
| 0.1371        | 5.62  | 9900  | 0.8110          | 0.8650   |
| 0.1425        | 5.68  | 10000 | 0.8159          | 0.8645   |
| 0.1425        | 5.73  | 10100 | 0.8174          | 0.8646   |
| 0.1425        | 5.79  | 10200 | 0.8159          | 0.8649   |
| 0.1425        | 5.85  | 10300 | 0.8110          | 0.8639   |
| 0.1425        | 5.9   | 10400 | 0.8135          | 0.8645   |
| 0.1505        | 5.96  | 10500 | 0.8140          | 0.8642   |
| 0.1505        | 6.02  | 10600 | 0.8628          | 0.8640   |
| 0.1505        | 6.07  | 10700 | 0.8540          | 0.8644   |
| 0.1505        | 6.13  | 10800 | 0.8530          | 0.8642   |
| 0.1505        | 6.19  | 10900 | 0.8560          | 0.8647   |
| 0.1086        | 6.24  | 11000 | 0.8555          | 0.8649   |
| 0.1086        | 6.3   | 11100 | 0.8604          | 0.8644   |
| 0.1086        | 6.36  | 11200 | 0.8569          | 0.8642   |
| 0.1086        | 6.41  | 11300 | 0.8530          | 0.8639   |
| 0.1086        | 6.47  | 11400 | 0.8589          | 0.8643   |
| 0.1076        | 6.53  | 11500 | 0.8525          | 0.8639   |
| 0.1076        | 6.58  | 11600 | 0.8579          | 0.8640   |
| 0.1076        | 6.64  | 11700 | 0.8594          | 0.8640   |
| 0.1076        | 6.7   | 11800 | 0.8599          | 0.8643   |
| 0.1076        | 6.75  | 11900 | 0.8564          | 0.8640   |
| 0.1109        | 6.81  | 12000 | 0.8633          | 0.8640   |
| 0.1109        | 6.87  | 12100 | 0.8584          | 0.8638   |
| 0.1109        | 6.92  | 12200 | 0.8647          | 0.8636   |
| 0.1109        | 6.98  | 12300 | 0.8599          | 0.8635   |
| 0.1109        | 7.04  | 12400 | 0.8979          | 0.8632   |
| 0.1028        | 7.09  | 12500 | 0.8936          | 0.8635   |
| 0.1028        | 7.15  | 12600 | 0.9043          | 0.8637   |
| 0.1028        | 7.21  | 12700 | 0.8989          | 0.8642   |
| 0.1028        | 7.26  | 12800 | 0.8936          | 0.8642   |
| 0.1028        | 7.32  | 12900 | 0.8921          | 0.8641   |
| 0.0774        | 7.38  | 13000 | 0.8955          | 0.8634   |
| 0.0774        | 7.43  | 13100 | 0.8950          | 0.8636   |
| 0.0774        | 7.49  | 13200 | 0.8994          | 0.8635   |
| 0.0774        | 7.55  | 13300 | 0.8999          | 0.8635   |
| 0.0774        | 7.6   | 13400 | 0.8936          | 0.8631   |
| 0.0852        | 7.66  | 13500 | 0.9048          | 0.8634   |
| 0.0852        | 7.72  | 13600 | 0.8960          | 0.8632   |
| 0.0852        | 7.78  | 13700 | 0.9023          | 0.8635   |
| 0.0852        | 7.83  | 13800 | 0.8984          | 0.8638   |
| 0.0852        | 7.89  | 13900 | 0.9019          | 0.8635   |
| 0.0879        | 7.95  | 14000 | 0.9014          | 0.8634   |
| 0.0879        | 8.0   | 14100 | 0.9136          | 0.8630   |
| 0.0879        | 8.06  | 14200 | 0.9312          | 0.8639   |
| 0.0879        | 8.12  | 14300 | 0.9346          | 0.8635   |
| 0.0879        | 8.17  | 14400 | 0.9307          | 0.8635   |
| 0.0611        | 8.23  | 14500 | 0.9419          | 0.8641   |
| 0.0611        | 8.29  | 14600 | 0.9331          | 0.8631   |
| 0.0611        | 8.34  | 14700 | 0.9375          | 0.8636   |
| 0.0611        | 8.4   | 14800 | 0.9292          | 0.8626   |
| 0.0611        | 8.46  | 14900 | 0.9458          | 0.8637   |
| 0.061         | 8.51  | 15000 | 0.9336          | 0.8634   |
| 0.061         | 8.57  | 15100 | 0.9409          | 0.8630   |
| 0.061         | 8.63  | 15200 | 0.9390          | 0.8632   |
| 0.061         | 8.68  | 15300 | 0.9375          | 0.8628   |
| 0.061         | 8.74  | 15400 | 0.9365          | 0.8630   |
| 0.0646        | 8.8   | 15500 | 0.9370          | 0.8628   |
| 0.0646        | 8.85  | 15600 | 0.9355          | 0.8629   |
| 0.0646        | 8.91  | 15700 | 0.9375          | 0.8632   |
| 0.0646        | 8.97  | 15800 | 0.9390          | 0.8630   |
| 0.0646        | 9.02  | 15900 | 0.9717          | 0.8630   |
| 0.0593        | 9.08  | 16000 | 0.9673          | 0.8626   |
| 0.0593        | 9.14  | 16100 | 0.9644          | 0.8630   |
| 0.0593        | 9.19  | 16200 | 0.9624          | 0.8631   |
| 0.0593        | 9.25  | 16300 | 0.9648          | 0.8633   |
| 0.0593        | 9.31  | 16400 | 0.9673          | 0.8632   |
| 0.0415        | 9.36  | 16500 | 0.9658          | 0.8633   |
| 0.0415        | 9.42  | 16600 | 0.9688          | 0.8628   |
| 0.0415        | 9.48  | 16700 | 0.9653          | 0.8632   |
| 0.0415        | 9.53  | 16800 | 0.9658          | 0.8628   |
| 0.0415        | 9.59  | 16900 | 0.9668          | 0.8629   |
| 0.0471        | 9.65  | 17000 | 0.9604          | 0.8625   |
| 0.0471        | 9.7   | 17100 | 0.9658          | 0.8621   |
| 0.0471        | 9.76  | 17200 | 0.9731          | 0.8630   |
| 0.0471        | 9.82  | 17300 | 0.9692          | 0.8626   |
| 0.0471        | 9.88  | 17400 | 0.9673          | 0.8623   |
| 0.0528        | 9.93  | 17500 | 0.9614          | 0.8620   |
| 0.0528        | 9.99  | 17600 | 0.9697          | 0.8621   |


### Framework versions

- Transformers 4.21.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1