File size: 13,090 Bytes
b39dcfe fd7c1ca b39dcfe 3da0e67 b39dcfe 5f41acd b39dcfe 3da0e67 b39dcfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: EleutherAI/gpt-neo-2.7B
model-index:
- name: output
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# output
## Model description
This model is a fine-tuned version of [EleutherAI/gpt-neo-2.7B](https://huggingface.co/EleutherAI/gpt-neo-2.7B) on the Lila-IID-train/dev set from the [Lila dataset](https://github.com/allenai/Lila).
## Usage
Bhaskara was trained with the following format:
~~~
Question: ...
Answer: ...
Program:
```python
...
```
~~~
It will perform best if queried in this way.
## Intended uses & limitations
If you use this model, please cite our work.
```
@INPROCEEDINGS{Mishra2022Lila,
author = {
Swaroop Mishra
and Matthew Finlayson
and Pan Lu
and Leonard Tang
and Sean Welleck
and Chitta Baral
and Tanmay Rajpurohit
and Oyvind Tafjord
and Ashish Sabharwal
and Peter Clark
and Ashwin Kalyan},
title = {Lila: A Unified Benchmark for Mathematical Reasoning},
booktitle = {Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
year = {2022}
}
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| No log | 0.06 | 100 | 0.7930 | 0.8214 |
| No log | 0.11 | 200 | 0.7544 | 0.8290 |
| No log | 0.17 | 300 | 0.7358 | 0.8328 |
| No log | 0.23 | 400 | 0.7192 | 0.8357 |
| 0.8156 | 0.28 | 500 | 0.7012 | 0.8397 |
| 0.8156 | 0.34 | 600 | 0.6904 | 0.8419 |
| 0.8156 | 0.4 | 700 | 0.6802 | 0.8440 |
| 0.8156 | 0.45 | 800 | 0.6670 | 0.8465 |
| 0.8156 | 0.51 | 900 | 0.6572 | 0.8486 |
| 0.7219 | 0.57 | 1000 | 0.6499 | 0.8500 |
| 0.7219 | 0.62 | 1100 | 0.6411 | 0.8522 |
| 0.7219 | 0.68 | 1200 | 0.6343 | 0.8537 |
| 0.7219 | 0.74 | 1300 | 0.6299 | 0.8546 |
| 0.7219 | 0.79 | 1400 | 0.6221 | 0.8561 |
| 0.662 | 0.85 | 1500 | 0.6157 | 0.8574 |
| 0.662 | 0.91 | 1600 | 0.6138 | 0.8579 |
| 0.662 | 0.96 | 1700 | 0.6055 | 0.8595 |
| 0.662 | 1.02 | 1800 | 0.6143 | 0.8598 |
| 0.662 | 1.08 | 1900 | 0.6191 | 0.8599 |
| 0.5707 | 1.14 | 2000 | 0.6118 | 0.8607 |
| 0.5707 | 1.19 | 2100 | 0.6123 | 0.8611 |
| 0.5707 | 1.25 | 2200 | 0.6089 | 0.8617 |
| 0.5707 | 1.31 | 2300 | 0.6064 | 0.8619 |
| 0.5707 | 1.36 | 2400 | 0.6079 | 0.8625 |
| 0.4923 | 1.42 | 2500 | 0.6040 | 0.8625 |
| 0.4923 | 1.48 | 2600 | 0.6030 | 0.8630 |
| 0.4923 | 1.53 | 2700 | 0.6021 | 0.8636 |
| 0.4923 | 1.59 | 2800 | 0.6001 | 0.8643 |
| 0.4923 | 1.65 | 2900 | 0.5981 | 0.8644 |
| 0.4909 | 1.7 | 3000 | 0.5942 | 0.8648 |
| 0.4909 | 1.76 | 3100 | 0.5918 | 0.8650 |
| 0.4909 | 1.82 | 3200 | 0.5923 | 0.8659 |
| 0.4909 | 1.87 | 3300 | 0.5884 | 0.8664 |
| 0.4909 | 1.93 | 3400 | 0.5884 | 0.8663 |
| 0.4964 | 1.99 | 3500 | 0.5903 | 0.8669 |
| 0.4964 | 2.04 | 3600 | 0.6421 | 0.8655 |
| 0.4964 | 2.1 | 3700 | 0.6401 | 0.8651 |
| 0.4964 | 2.16 | 3800 | 0.6411 | 0.8649 |
| 0.4964 | 2.21 | 3900 | 0.6387 | 0.8645 |
| 0.345 | 2.27 | 4000 | 0.6362 | 0.8654 |
| 0.345 | 2.33 | 4100 | 0.6362 | 0.8654 |
| 0.345 | 2.38 | 4200 | 0.6362 | 0.8654 |
| 0.345 | 2.44 | 4300 | 0.6357 | 0.8655 |
| 0.345 | 2.5 | 4400 | 0.6362 | 0.8656 |
| 0.3463 | 2.55 | 4500 | 0.6377 | 0.8658 |
| 0.3463 | 2.61 | 4600 | 0.6357 | 0.8660 |
| 0.3463 | 2.67 | 4700 | 0.6294 | 0.8665 |
| 0.3463 | 2.72 | 4800 | 0.6333 | 0.8665 |
| 0.3463 | 2.78 | 4900 | 0.6362 | 0.8662 |
| 0.3508 | 2.84 | 5000 | 0.6357 | 0.8666 |
| 0.3508 | 2.89 | 5100 | 0.6299 | 0.8673 |
| 0.3508 | 2.95 | 5200 | 0.6313 | 0.8668 |
| 0.3508 | 3.01 | 5300 | 0.7188 | 0.8646 |
| 0.3508 | 3.06 | 5400 | 0.7017 | 0.8656 |
| 0.295 | 3.12 | 5500 | 0.6982 | 0.8653 |
| 0.295 | 3.18 | 5600 | 0.7031 | 0.8655 |
| 0.295 | 3.23 | 5700 | 0.6992 | 0.8651 |
| 0.295 | 3.29 | 5800 | 0.6997 | 0.8653 |
| 0.295 | 3.35 | 5900 | 0.7041 | 0.8651 |
| 0.2348 | 3.41 | 6000 | 0.7075 | 0.8649 |
| 0.2348 | 3.46 | 6100 | 0.6992 | 0.8650 |
| 0.2348 | 3.52 | 6200 | 0.7065 | 0.8647 |
| 0.2348 | 3.58 | 6300 | 0.6997 | 0.8652 |
| 0.2348 | 3.63 | 6400 | 0.7026 | 0.8651 |
| 0.2411 | 3.69 | 6500 | 0.7046 | 0.8656 |
| 0.2411 | 3.75 | 6600 | 0.7007 | 0.8655 |
| 0.2411 | 3.8 | 6700 | 0.7026 | 0.8651 |
| 0.2411 | 3.86 | 6800 | 0.7031 | 0.8655 |
| 0.2411 | 3.92 | 6900 | 0.7012 | 0.8658 |
| 0.251 | 3.97 | 7000 | 0.7051 | 0.8656 |
| 0.251 | 4.03 | 7100 | 0.7607 | 0.8650 |
| 0.251 | 4.09 | 7200 | 0.7632 | 0.8656 |
| 0.251 | 4.14 | 7300 | 0.7588 | 0.8655 |
| 0.251 | 4.2 | 7400 | 0.7578 | 0.8651 |
| 0.1797 | 4.26 | 7500 | 0.7710 | 0.8645 |
| 0.1797 | 4.31 | 7600 | 0.7627 | 0.8648 |
| 0.1797 | 4.37 | 7700 | 0.7583 | 0.8650 |
| 0.1797 | 4.43 | 7800 | 0.7646 | 0.8649 |
| 0.1797 | 4.48 | 7900 | 0.7598 | 0.8646 |
| 0.1784 | 4.54 | 8000 | 0.7656 | 0.8650 |
| 0.1784 | 4.6 | 8100 | 0.7617 | 0.8648 |
| 0.1784 | 4.65 | 8200 | 0.7573 | 0.8651 |
| 0.1784 | 4.71 | 8300 | 0.7671 | 0.8648 |
| 0.1784 | 4.77 | 8400 | 0.7563 | 0.8651 |
| 0.1827 | 4.82 | 8500 | 0.7651 | 0.8649 |
| 0.1827 | 4.88 | 8600 | 0.7637 | 0.8650 |
| 0.1827 | 4.94 | 8700 | 0.7607 | 0.8654 |
| 0.1827 | 4.99 | 8800 | 0.7607 | 0.8650 |
| 0.1827 | 5.05 | 8900 | 0.8149 | 0.8646 |
| 0.167 | 5.11 | 9000 | 0.8081 | 0.8648 |
| 0.167 | 5.16 | 9100 | 0.8184 | 0.8644 |
| 0.167 | 5.22 | 9200 | 0.8140 | 0.8647 |
| 0.167 | 5.28 | 9300 | 0.8169 | 0.8644 |
| 0.167 | 5.33 | 9400 | 0.8120 | 0.8645 |
| 0.1371 | 5.39 | 9500 | 0.8154 | 0.8643 |
| 0.1371 | 5.45 | 9600 | 0.8179 | 0.8642 |
| 0.1371 | 5.51 | 9700 | 0.8154 | 0.8643 |
| 0.1371 | 5.56 | 9800 | 0.8120 | 0.8645 |
| 0.1371 | 5.62 | 9900 | 0.8110 | 0.8650 |
| 0.1425 | 5.68 | 10000 | 0.8159 | 0.8645 |
| 0.1425 | 5.73 | 10100 | 0.8174 | 0.8646 |
| 0.1425 | 5.79 | 10200 | 0.8159 | 0.8649 |
| 0.1425 | 5.85 | 10300 | 0.8110 | 0.8639 |
| 0.1425 | 5.9 | 10400 | 0.8135 | 0.8645 |
| 0.1505 | 5.96 | 10500 | 0.8140 | 0.8642 |
| 0.1505 | 6.02 | 10600 | 0.8628 | 0.8640 |
| 0.1505 | 6.07 | 10700 | 0.8540 | 0.8644 |
| 0.1505 | 6.13 | 10800 | 0.8530 | 0.8642 |
| 0.1505 | 6.19 | 10900 | 0.8560 | 0.8647 |
| 0.1086 | 6.24 | 11000 | 0.8555 | 0.8649 |
| 0.1086 | 6.3 | 11100 | 0.8604 | 0.8644 |
| 0.1086 | 6.36 | 11200 | 0.8569 | 0.8642 |
| 0.1086 | 6.41 | 11300 | 0.8530 | 0.8639 |
| 0.1086 | 6.47 | 11400 | 0.8589 | 0.8643 |
| 0.1076 | 6.53 | 11500 | 0.8525 | 0.8639 |
| 0.1076 | 6.58 | 11600 | 0.8579 | 0.8640 |
| 0.1076 | 6.64 | 11700 | 0.8594 | 0.8640 |
| 0.1076 | 6.7 | 11800 | 0.8599 | 0.8643 |
| 0.1076 | 6.75 | 11900 | 0.8564 | 0.8640 |
| 0.1109 | 6.81 | 12000 | 0.8633 | 0.8640 |
| 0.1109 | 6.87 | 12100 | 0.8584 | 0.8638 |
| 0.1109 | 6.92 | 12200 | 0.8647 | 0.8636 |
| 0.1109 | 6.98 | 12300 | 0.8599 | 0.8635 |
| 0.1109 | 7.04 | 12400 | 0.8979 | 0.8632 |
| 0.1028 | 7.09 | 12500 | 0.8936 | 0.8635 |
| 0.1028 | 7.15 | 12600 | 0.9043 | 0.8637 |
| 0.1028 | 7.21 | 12700 | 0.8989 | 0.8642 |
| 0.1028 | 7.26 | 12800 | 0.8936 | 0.8642 |
| 0.1028 | 7.32 | 12900 | 0.8921 | 0.8641 |
| 0.0774 | 7.38 | 13000 | 0.8955 | 0.8634 |
| 0.0774 | 7.43 | 13100 | 0.8950 | 0.8636 |
| 0.0774 | 7.49 | 13200 | 0.8994 | 0.8635 |
| 0.0774 | 7.55 | 13300 | 0.8999 | 0.8635 |
| 0.0774 | 7.6 | 13400 | 0.8936 | 0.8631 |
| 0.0852 | 7.66 | 13500 | 0.9048 | 0.8634 |
| 0.0852 | 7.72 | 13600 | 0.8960 | 0.8632 |
| 0.0852 | 7.78 | 13700 | 0.9023 | 0.8635 |
| 0.0852 | 7.83 | 13800 | 0.8984 | 0.8638 |
| 0.0852 | 7.89 | 13900 | 0.9019 | 0.8635 |
| 0.0879 | 7.95 | 14000 | 0.9014 | 0.8634 |
| 0.0879 | 8.0 | 14100 | 0.9136 | 0.8630 |
| 0.0879 | 8.06 | 14200 | 0.9312 | 0.8639 |
| 0.0879 | 8.12 | 14300 | 0.9346 | 0.8635 |
| 0.0879 | 8.17 | 14400 | 0.9307 | 0.8635 |
| 0.0611 | 8.23 | 14500 | 0.9419 | 0.8641 |
| 0.0611 | 8.29 | 14600 | 0.9331 | 0.8631 |
| 0.0611 | 8.34 | 14700 | 0.9375 | 0.8636 |
| 0.0611 | 8.4 | 14800 | 0.9292 | 0.8626 |
| 0.0611 | 8.46 | 14900 | 0.9458 | 0.8637 |
| 0.061 | 8.51 | 15000 | 0.9336 | 0.8634 |
| 0.061 | 8.57 | 15100 | 0.9409 | 0.8630 |
| 0.061 | 8.63 | 15200 | 0.9390 | 0.8632 |
| 0.061 | 8.68 | 15300 | 0.9375 | 0.8628 |
| 0.061 | 8.74 | 15400 | 0.9365 | 0.8630 |
| 0.0646 | 8.8 | 15500 | 0.9370 | 0.8628 |
| 0.0646 | 8.85 | 15600 | 0.9355 | 0.8629 |
| 0.0646 | 8.91 | 15700 | 0.9375 | 0.8632 |
| 0.0646 | 8.97 | 15800 | 0.9390 | 0.8630 |
| 0.0646 | 9.02 | 15900 | 0.9717 | 0.8630 |
| 0.0593 | 9.08 | 16000 | 0.9673 | 0.8626 |
| 0.0593 | 9.14 | 16100 | 0.9644 | 0.8630 |
| 0.0593 | 9.19 | 16200 | 0.9624 | 0.8631 |
| 0.0593 | 9.25 | 16300 | 0.9648 | 0.8633 |
| 0.0593 | 9.31 | 16400 | 0.9673 | 0.8632 |
| 0.0415 | 9.36 | 16500 | 0.9658 | 0.8633 |
| 0.0415 | 9.42 | 16600 | 0.9688 | 0.8628 |
| 0.0415 | 9.48 | 16700 | 0.9653 | 0.8632 |
| 0.0415 | 9.53 | 16800 | 0.9658 | 0.8628 |
| 0.0415 | 9.59 | 16900 | 0.9668 | 0.8629 |
| 0.0471 | 9.65 | 17000 | 0.9604 | 0.8625 |
| 0.0471 | 9.7 | 17100 | 0.9658 | 0.8621 |
| 0.0471 | 9.76 | 17200 | 0.9731 | 0.8630 |
| 0.0471 | 9.82 | 17300 | 0.9692 | 0.8626 |
| 0.0471 | 9.88 | 17400 | 0.9673 | 0.8623 |
| 0.0528 | 9.93 | 17500 | 0.9614 | 0.8620 |
| 0.0528 | 9.99 | 17600 | 0.9697 | 0.8621 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|