File size: 2,032 Bytes
b2c420f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7097
- Accuracy: 0.8

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.9677        | 1.0   | 112  | 1.8659          | 0.42     |
| 1.1919        | 2.0   | 225  | 1.3071          | 0.61     |
| 0.9976        | 3.0   | 337  | 0.9191          | 0.74     |
| 0.5864        | 4.0   | 450  | 0.8043          | 0.78     |
| 0.534         | 5.0   | 562  | 0.7504          | 0.74     |
| 0.2751        | 6.0   | 675  | 0.7042          | 0.78     |
| 0.2142        | 7.0   | 787  | 0.7410          | 0.75     |
| 0.1927        | 8.0   | 900  | 0.7033          | 0.77     |
| 0.1604        | 9.0   | 1012 | 0.7741          | 0.77     |
| 0.0934        | 9.96  | 1120 | 0.7097          | 0.8      |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.15.0
- Tokenizers 0.13.2