File size: 2,832 Bytes
79ed695 2c1556a 79ed695 e7bc810 79ed695 e7bc810 79ed695 e7bc810 79ed695 e7bc810 79ed695 bbbcf03 79ed695 bbbcf03 79ed695 bbbcf03 79ed695 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
language:
- en
- fr
license: mit
tags:
- lm-detection
datasets:
- hc3_multi_custom_ms_hg
metrics:
- f1
base_model: xlm-roberta-base
model-index:
- name: xlmr-chatgptdetect-noisy
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: HC3 FULL_MULTI_1.0_0.5_0.5
type: glue
config: full_multi_1.0_0.5_0.5
split: vsl
args: full_multi_1.0_0.5_0.5
metrics:
- type: f1
value: 0.963274059512108
name: F1
---
# xlmr-chatgptdetect-noisy
Multilingual ChatGPT detection model from [Towards a Robust Detection of Language Model-Generated Text: Is ChatGPT that easy to detect?](TODO:)
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the HC3 FULL_MULTI_1.0_0.5_0.5 dataset with noise added.
It achieves the following results on the:
Evaluation set:
- Loss: 0.1573
- F1: 0.9633
Test Set:
- F1: 0.97
Adversarial:
- F1: 0.45
## Model description
This a model trained to detect text created by ChatGPT in French.
The training data is the combination of the `hc3_fr_full` and `hc3_en_full` subsets of [almanach/hc3_multi](https://huggingface.co/datasets/almanach/hc3_french_ood), but with added misspelling and homoglyph attacks.
## Intended uses & limitations
This model is for research purposes only.
It is not intended to be used in production as we said in our paper:
**We would like to emphasize that our study does not claim to have produced an universally accurate detector. Our strong results are based on in-domain testing and, unsurprisingly, do not generalize in out-of-domain scenarios. This is even more so when used on text specifically designed to fool language model detectors and on text intentionally stylistically similar to ChatGPT-generated text, especially instructional text.**
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.0317 | 1.0 | 8538 | 0.1732 | 0.9492 |
| 0.008 | 2.0 | 17076 | 0.3541 | 0.9270 |
| 0.0085 | 3.0 | 25614 | 0.1161 | 0.9726 |
| 0.0015 | 4.0 | 34152 | 0.2557 | 0.9516 |
| 0.0 | 5.0 | 42690 | 0.2286 | 0.9650 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu115
- Datasets 2.8.0
- Tokenizers 0.13.2
|