{"cells":[{"cell_type":"code","execution_count":1,"metadata":{"id":"smCuTxuYOAOA","executionInfo":{"status":"ok","timestamp":1719132639813,"user_tz":-240,"elapsed":7448,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"}}},"outputs":[],"source":["from transformers import PegasusXForConditionalGeneration, PegasusTokenizer, Seq2SeqTrainer, Seq2SeqTrainingArguments, AutoTokenizer\n","import torch"]},{"cell_type":"code","execution_count":2,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":3730,"status":"ok","timestamp":1719132646571,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"},"user_tz":-240},"id":"NgHD7qnYSCju","outputId":"cfb18254-ae64-48f1-f64a-1eb89447c476"},"outputs":[{"output_type":"stream","name":"stdout","text":["Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"]}],"source":["from google.colab import drive\n","drive.mount('/content/drive')"]},{"cell_type":"code","execution_count":3,"metadata":{"id":"eVxWWYHNOPe0","executionInfo":{"status":"ok","timestamp":1719132650429,"user_tz":-240,"elapsed":442,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"}}},"outputs":[],"source":["class PegasusDataset(torch.utils.data.Dataset):\n"," def __init__(self, encodings, labels):\n"," self.encodings = encodings\n"," self.labels = labels\n"," def __getitem__(self, idx):\n"," item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}\n"," item['labels'] = torch.tensor(self.labels['input_ids'][idx]) # torch.tensor(self.labels[idx])\n"," return item\n"," def __len__(self):\n"," return len(self.labels['input_ids']) # len(self.labels)"]},{"cell_type":"code","source":["max_input_length = 8192\n","max_output_length = 512"],"metadata":{"id":"bIevvdhmJNjI"},"execution_count":null,"outputs":[]},{"cell_type":"code","execution_count":4,"metadata":{"id":"fWjskB7GOhyR","executionInfo":{"status":"ok","timestamp":1719132654237,"user_tz":-240,"elapsed":646,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"}}},"outputs":[],"source":["def prepare_data(model_name,\n"," train_texts, train_labels,\n"," val_texts, val_labels,\n"," test_texts, test_labels):\n"," \"\"\"\n"," Prepare input data for model fine-tuning\n"," \"\"\"\n"," tokenizer = AutoTokenizer.from_pretrained(\"google/pegasus-x-large\")\n"," tokenizer.model_max_length = 4000\n","\n"," prepare_val = False if val_texts is None or val_labels is None else True\n"," prepare_test = False if test_texts is None or test_labels is None else True\n","\n"," def tokenize_data(texts, labels):\n"," encodings = tokenizer(texts, truncation=True, padding='max_length',max_length = 4000)\n"," decodings = tokenizer(labels, truncation=True, padding='max_length',max_length = 512)\n"," dataset_tokenized = PegasusDataset(encodings, decodings)\n"," return dataset_tokenized\n","\n"," train_dataset = tokenize_data(train_texts, train_labels)\n"," val_dataset = tokenize_data(val_texts, val_labels) if prepare_val else None\n"," test_dataset = tokenize_data(test_texts, test_labels) if prepare_test else None\n","\n"," return train_dataset, val_dataset, test_dataset, tokenizer\n"]},{"cell_type":"code","source":["def compute_metrics(pred):\n"," labels_ids = pred.label_ids\n"," pred_ids = pred.predictions\n"," rouge = load_metric(\"rouge\")\n","\n"," pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)\n"," labels_ids[labels_ids == -100] = tokenizer.pad_token_id\n"," label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)\n","\n"," rouge_output = rouge.compute(\n"," predictions=pred_str, references=label_str, rouge_types=[\"rouge2\"]\n"," )[\"rouge2\"].mid\n","\n"," return {\n"," \"rouge2_precision\": round(rouge_output.precision, 4),\n"," \"rouge2_recall\": round(rouge_output.recall, 4),\n"," \"rouge2_fmeasure\": round(rouge_output.fmeasure, 4),\n"," }"],"metadata":{"id":"iOmCzxlZJhgZ"},"execution_count":null,"outputs":[]},{"cell_type":"code","execution_count":5,"metadata":{"id":"0N_f-N7OOsOt","executionInfo":{"status":"ok","timestamp":1719132664276,"user_tz":-240,"elapsed":423,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"}}},"outputs":[],"source":["def prepare_fine_tuning(model_name, tokenizer, train_dataset, val_dataset, freeze_encoder=False, output_dir='./results'):\n"," \"\"\"\n"," Prepare configurations and base model for fine-tuning\n"," \"\"\"\n"," torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'\n"," model = PegasusXForConditionalGeneration.from_pretrained(\"google/pegasus-x-base\").to(torch_device)\n"," model.config.max_length = 512\n"," model.config.min_length = 100\n"," model.config.length_penalty = 2.0\n"," model.config.early_stopping = True\n"," model.config.no_repeat_ngram_size = 3\n"," print(\"val dataset length= \",len(val_dataset))\n","\n"," if freeze_encoder:\n"," for param in model.model.encoder.parameters():\n"," param.requires_grad = False\n","\n"," training_args = Seq2SeqTrainingArguments(\n"," predict_with_generate=True,\n"," evaluation_strategy=\"steps\",\n"," per_device_train_batch_size=2,\n"," per_device_eval_batch_size=2,\n"," fp16=True,\n"," output_dir=\"./\",\n"," logging_steps=5,\n"," eval_steps=10,\n"," save_steps=10,\n"," save_total_limit=2,\n"," gradient_accumulation_steps=4,\n"," eval_accumulation_steps=1,\n"," num_train_epochs=5,\n",")\n"," trainer = Seq2SeqTrainer(\n"," model=model,\n"," args=training_args,\n"," train_dataset=train_dataset,\n"," eval_dataset=val_dataset,\n"," tokenizer=tokenizer,\n","\n","\n"," #compute_metrics=compute_metrics,\n"," )\n"," return trainer"]},{"cell_type":"code","execution_count":6,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"elapsed":11140,"status":"ok","timestamp":1719132607363,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"},"user_tz":-240},"id":"pBw9rlilPERD","outputId":"690a5420-3041-40ca-ff39-5da05183f16c"},"outputs":[{"output_type":"stream","name":"stdout","text":["Collecting datasets\n"," Downloading datasets-2.20.0-py3-none-any.whl (547 kB)\n","\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/547.8 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m204.8/547.8 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m542.7/547.8 kB\u001b[0m \u001b[31m8.1 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m547.8/547.8 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets) (3.15.1)\n","Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (1.25.2)\n","Collecting pyarrow>=15.0.0 (from datasets)\n"," Downloading pyarrow-16.1.0-cp310-cp310-manylinux_2_28_x86_64.whl (40.8 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m40.8/40.8 MB\u001b[0m \u001b[31m43.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hRequirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets) (0.6)\n","Collecting dill<0.3.9,>=0.3.0 (from datasets)\n"," Downloading dill-0.3.8-py3-none-any.whl (116 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m17.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (2.0.3)\n","Collecting requests>=2.32.2 (from datasets)\n"," Downloading requests-2.32.3-py3-none-any.whl (64 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m64.9/64.9 kB\u001b[0m \u001b[31m10.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hRequirement already satisfied: tqdm>=4.66.3 in /usr/local/lib/python3.10/dist-packages (from datasets) (4.66.4)\n","Collecting xxhash (from datasets)\n"," Downloading xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m28.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hCollecting multiprocess (from datasets)\n"," Downloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m22.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hRequirement already satisfied: fsspec[http]<=2024.5.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n","Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.9.5)\n","Requirement already satisfied: huggingface-hub>=0.21.2 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.23.4)\n","Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets) (24.1)\n","Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (6.0.1)\n","Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n","Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.2.0)\n","Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.1)\n","Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.5)\n","Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.4)\n","Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n","Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.21.2->datasets) (4.12.2)\n","Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets) (3.3.2)\n","Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets) (3.7)\n","Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets) (2.0.7)\n","Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets) (2024.6.2)\n","Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n","Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2023.4)\n","Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2024.1)\n","Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->datasets) (1.16.0)\n","Installing collected packages: xxhash, requests, pyarrow, dill, multiprocess, datasets\n"," Attempting uninstall: requests\n"," Found existing installation: requests 2.31.0\n"," Uninstalling requests-2.31.0:\n"," Successfully uninstalled requests-2.31.0\n"," Attempting uninstall: pyarrow\n"," Found existing installation: pyarrow 14.0.2\n"," Uninstalling pyarrow-14.0.2:\n"," Successfully uninstalled pyarrow-14.0.2\n","\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n","cudf-cu12 24.4.1 requires pyarrow<15.0.0a0,>=14.0.1, but you have pyarrow 16.1.0 which is incompatible.\n","google-colab 1.0.0 requires requests==2.31.0, but you have requests 2.32.3 which is incompatible.\n","ibis-framework 8.0.0 requires pyarrow<16,>=2, but you have pyarrow 16.1.0 which is incompatible.\u001b[0m\u001b[31m\n","\u001b[0mSuccessfully installed datasets-2.20.0 dill-0.3.8 multiprocess-0.70.16 pyarrow-16.1.0 requests-2.32.3 xxhash-3.4.1\n"]},{"output_type":"display_data","data":{"application/vnd.colab-display-data+json":{"pip_warning":{"packages":["pyarrow","requests"]},"id":"458d17a813d141ea80e33a9756c14de2"}},"metadata":{}}],"source":["pip install datasets"]},{"cell_type":"code","execution_count":1,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":57840,"status":"ok","timestamp":1719132394116,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"},"user_tz":-240},"id":"mFugBZJdUKz8","outputId":"6bce4b34-21b7-4d7f-d1ff-a8b82bd94a13"},"outputs":[{"output_type":"stream","name":"stdout","text":["Collecting accelerate\n"," Downloading accelerate-0.31.0-py3-none-any.whl (309 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m309.4/309.4 kB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from accelerate) (1.25.2)\n","Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from accelerate) (24.1)\n","Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate) (5.9.5)\n","Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate) (6.0.1)\n","Requirement already satisfied: torch>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from accelerate) (2.3.0+cu121)\n","Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from accelerate) (0.23.4)\n","Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from accelerate) (0.4.3)\n","Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (3.15.1)\n","Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (4.12.2)\n","Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (1.12.1)\n","Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (3.3)\n","Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (3.1.4)\n","Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (2023.6.0)\n","Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch>=1.10.0->accelerate)\n"," Using cached nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n","Collecting nvidia-cuda-runtime-cu12==12.1.105 (from torch>=1.10.0->accelerate)\n"," Using cached nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n","Collecting nvidia-cuda-cupti-cu12==12.1.105 (from torch>=1.10.0->accelerate)\n"," Using cached nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n","Collecting nvidia-cudnn-cu12==8.9.2.26 (from torch>=1.10.0->accelerate)\n"," Using cached nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n","Collecting nvidia-cublas-cu12==12.1.3.1 (from torch>=1.10.0->accelerate)\n"," Using cached nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n","Collecting nvidia-cufft-cu12==11.0.2.54 (from torch>=1.10.0->accelerate)\n"," Using cached nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n","Collecting nvidia-curand-cu12==10.3.2.106 (from torch>=1.10.0->accelerate)\n"," Using cached nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n","Collecting nvidia-cusolver-cu12==11.4.5.107 (from torch>=1.10.0->accelerate)\n"," Using cached nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n","Collecting nvidia-cusparse-cu12==12.1.0.106 (from torch>=1.10.0->accelerate)\n"," Using cached nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n","Collecting nvidia-nccl-cu12==2.20.5 (from torch>=1.10.0->accelerate)\n"," Using cached nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl (176.2 MB)\n","Collecting nvidia-nvtx-cu12==12.1.105 (from torch>=1.10.0->accelerate)\n"," Using cached nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n","Requirement already satisfied: triton==2.3.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (2.3.0)\n","Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.10.0->accelerate)\n"," Downloading nvidia_nvjitlink_cu12-12.5.40-py3-none-manylinux2014_x86_64.whl (21.3 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.3/21.3 MB\u001b[0m \u001b[31m54.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hRequirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->accelerate) (2.31.0)\n","Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub->accelerate) (4.66.4)\n","Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.10.0->accelerate) (2.1.5)\n","Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub->accelerate) (3.3.2)\n","Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub->accelerate) (3.7)\n","Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub->accelerate) (2.0.7)\n","Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub->accelerate) (2024.6.2)\n","Requirement already satisfied: mpmath<1.4.0,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.10.0->accelerate) (1.3.0)\n","Installing collected packages: nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, nvidia-cusparse-cu12, nvidia-cudnn-cu12, nvidia-cusolver-cu12, accelerate\n","Successfully installed accelerate-0.31.0 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.20.5 nvidia-nvjitlink-cu12-12.5.40 nvidia-nvtx-cu12-12.1.105\n"]}],"source":["pip install accelerate -U"]},{"cell_type":"code","source":["!pip install rouge_score"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"caoO2nTuMAEc","executionInfo":{"status":"ok","timestamp":1718077703898,"user_tz":-240,"elapsed":6900,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"}},"outputId":"b11f75f4-00d7-453a-bf1e-420873ca90dd"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Collecting rouge_score\n"," Downloading rouge_score-0.1.2.tar.gz (17 kB)\n"," Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n","Requirement already satisfied: absl-py in /usr/local/lib/python3.10/dist-packages (from rouge_score) (1.4.0)\n","Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from rouge_score) (3.8.1)\n","Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from rouge_score) (1.25.2)\n","Requirement already satisfied: six>=1.14.0 in /usr/local/lib/python3.10/dist-packages (from rouge_score) (1.16.0)\n","Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->rouge_score) (8.1.7)\n","Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk->rouge_score) (1.4.2)\n","Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.10/dist-packages (from nltk->rouge_score) (2024.5.15)\n","Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from nltk->rouge_score) (4.66.4)\n","Building wheels for collected packages: rouge_score\n"," Building wheel for rouge_score (setup.py) ... \u001b[?25l\u001b[?25hdone\n"," Created wheel for rouge_score: filename=rouge_score-0.1.2-py3-none-any.whl size=24933 sha256=33820c7e82308f5d41890697ba921a24b59c05bb8c533b697e4af0260aa7ec88\n"," Stored in directory: /root/.cache/pip/wheels/5f/dd/89/461065a73be61a532ff8599a28e9beef17985c9e9c31e541b4\n","Successfully built rouge_score\n","Installing collected packages: rouge_score\n","Successfully installed rouge_score-0.1.2\n"]}]},{"cell_type":"code","source":["!pip install --upgrade pyarrow"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"1dIQSj0s3oX-","executionInfo":{"status":"ok","timestamp":1718974591135,"user_tz":-240,"elapsed":6371,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"}},"outputId":"02823204-5ece-42f3-d76b-7ec59d135af7"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Requirement already satisfied: pyarrow in /usr/local/lib/python3.10/dist-packages (16.1.0)\n","Requirement already satisfied: numpy>=1.16.6 in /usr/local/lib/python3.10/dist-packages (from pyarrow) (1.25.2)\n"]}]},{"cell_type":"code","execution_count":6,"metadata":{"id":"192uOu4uOzZr","executionInfo":{"status":"ok","timestamp":1719133125414,"user_tz":-240,"elapsed":402511,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"}}},"outputs":[],"source":["import os\n","import glob\n","import pandas as pd\n","import matplotlib.pyplot as plt\n","from datasets import Dataset, load_metric\n","from sklearn.model_selection import train_test_split\n","if __name__=='__main__':\n","\n"," from datasets import load_dataset\n","\n"," input_dir = '/content/drive/MyDrive/RA_Internship/PACSUM/DATASET_PACSUM/dataset/inputs'\n"," target_dir = '/content/drive/MyDrive/RA_Internship/PACSUM/DATASET_PACSUM/dataset/targets'\n"," data = {'input_text': [], 'target_text': []}\n"," input_files = glob.glob(os.path.join(input_dir, '*.txt'))\n","\n"," for input_file in input_files:\n"," filename = os.path.basename(input_file)\n"," target_file = os.path.join(target_dir, filename)\n","\n"," with open(input_file, 'r') as f:\n"," input_text = f.read()\n"," with open(target_file, 'r') as f:\n"," target_text = f.read()\n","\n"," data['input_text'].append(input_text)\n"," data['target_text'].append(target_text)\n"," df = pd.DataFrame(data)\n"," train_df, temp_df = train_test_split(df, test_size=0.2, random_state=42)\n"," eval_df, test_df = train_test_split(temp_df, test_size=0.5, random_state=42)\n","\n"," train_dataset = Dataset.from_pandas(train_df)\n"," eval_dataset = Dataset.from_pandas(eval_df)\n"," test_dataset = Dataset.from_pandas(test_df)\n","\n"," # print(test_dataset)\n"]},{"cell_type":"code","execution_count":7,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":35},"executionInfo":{"elapsed":606,"status":"ok","timestamp":1719133148904,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"},"user_tz":-240},"id":"eo519NZJU3e1","outputId":"67924526-366c-411a-f755-00a8abdc1f06"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["'0.31.0'"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"string"}},"metadata":{},"execution_count":7}],"source":["import accelerate\n","\n","accelerate.__version__"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"e3T4btv9WF6i"},"outputs":[],"source":["from transformers import logging\n","\n","logging.set_verbosity_warning()"]},{"cell_type":"code","source":["print(len(train_dataset))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"v5PhwjbacX8I","executionInfo":{"status":"ok","timestamp":1718975621397,"user_tz":-240,"elapsed":1294,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"}},"outputId":"94d82059-e286-44bb-ba08-a9a5e3c0bfb5"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["794\n"]}]},{"cell_type":"code","execution_count":8,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000,"referenced_widgets":["0724934679264e3e8010be8ccc795030","53e066181c1448c9b8e7f0e4ff613e5f","67496c08aa1c40a19d15411e97a92b25","e85cab47171741e385bfe5adf9d9397a","227c2c0c1db04ddd9b7f9bd8f4791eff","5aa5c9c4f6434e1d85dfdac98d56efba","bca9e38e4bcb45e4bff0fb56112a5624","7b505d0782cd45eebec23d2bd04f1080","9a812ab866324e12bed9151e67fc1ca1","1d1cc555e93745a5b081ddd41bd1a50a","d48de3f52d704c89b1c4ba2af96a8f7a","fadcf58b21774c92a5aa7c9af7a0b7fb","932444b5463f4ac18f3c069d381e3442","267d20c2f29d4fbe871cf857d09d1eb7","84f27090bb714cb79e3dfc8d75a71d0d","82c7dc612a4d449f8338ff2631379fbf","f8d543952faf4bf392ce23d801fd2f73","9a187d32d4ac41d9bd16ab139cb94e4b","bf689e6a929e4c55bc61cd920770a716","a209095d1fd14a8d9baa4483de45646e","05dffeb366ca4863bdb4a6f17b8ff0bb","991930b26c474c4ea9d08be5edca63a2","ec44b1975df548aaae34f80e1518c217","3f9cc8e3cd22467ea6c922ffe6130a62","19f45ad6717c490dadf2358cfa24ae22","22f9541dea474f3a92b6d14b0eef1cb7","8380017b80ea4fb0aa1d30867d552b94","3a39802ef335474ba52780a0ddc83c76","5cfd1bb35e41431bad905276a58328e9","b5a83f59601e4ee19d3c4bbe7748e182","61acf2ed58134e2491b83ffc7886a505","55c4ff50ebf74d22aba0e68b39c3f2e0","1f5ee5de50ce4481b0f8b1149e27b7f2","cc07e281cc8a42709c2ad1aac6b416e0","08231d9028174807bacc3d8fd5de3f82","e6446322b3f04478b2a9de6dc58c4f47","d52497ddff864eb28aaff662bd54002b","4cb8db99145c4d3cbbc3a617d131c69c","0114b24ce9d24ab0b41f5f8aa4e20c93","5d2d8632f0184c8bbb01d94e35a3eaf6","7831cc069fee4609bb41177b97216632","8c8efad765284779abbaefda207f085f","2ca69fc7299b4ae4883613e856597548","c3f4c5f423e24cd186979b0c65fd07a8","bc4fe7ee2b5b43cb9806a5e345e7285d","9f6ecda2094f4588a8569df644c91a89","b890182b6bf344029d8e916a56a3604b","fc132f9d441644d2b31d3125944184f5","749c90df22f641ea94b08ccca80a9a60","c4f001ab5920463eb95850759a667c09","45d3bf7e724945168376ad09a3ad468b","ef933615cf22409fbfa9b4ff8e528495","4a51ef134ce94f8eaaf55efb980a4a79","a3fa2e44c70b453e81b7d41d0a90b72b","136d326f66764cae807a928dad91888c","d9ef01d5e8944e8b81daf832e5db05ee","275394b887704cf99c3703a90123a96d","fec8429ae83b4c5488e9c6a44ef37bf3","17af93915a8e4fc69c7df0e623a8126d","211286057ee343298d8736f98cd194b7","c6aa6c387bb241fc8ed3db89704f8375","7f18d3e94fb2489f86a617502fb5ac72","961c9b49cfac47ad9efbb6076820f1b8","0c0eab169f874ca3b627f756f299bc6e","a50824d70ef045e68b3744750593ca8d","e069d1f627bd43fe878c3054decf4870","c9961a9ae43f40998362a5fc90d9666b","d72ad9f448864321ac48db1350d068d9","a4561186fe394b6c9ee5f48ea2f04bb6","f5a7b403c09248b181091ba98c5fbd43","7047a6d81fa9422187120cbb2944de14","658a3275c6704bf08932c943564aecfc","6779fe9c110f49898cb11753dad25d43","1fbd8d0d5e0049059b84631c519c0f36","2a223a68fa22403083e782cdc8a11f37","186131f281bc4aa6be0c59478b0edf4f","7c26b1295b2c4bd2a3cc7af4d4f337a0"]},"id":"YoeEBu57US5H","outputId":"a905aa17-3f48-493a-9b48-43efadde1648","executionInfo":{"status":"ok","timestamp":1719137071052,"user_tz":-240,"elapsed":3917251,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"}}},"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:89: UserWarning: \n","The secret `HF_TOKEN` does not exist in your Colab secrets.\n","To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n","You will be able to reuse this secret in all of your notebooks.\n","Please note that authentication is recommended but still optional to access public models or datasets.\n"," warnings.warn(\n"]},{"output_type":"display_data","data":{"text/plain":["tokenizer_config.json: 0%| | 0.00/2.02k [00:00"],"text/html":["\n","
\n"," \n"," \n"," [500/500 1:04:37, Epoch 5/5]\n","
\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
StepTraining LossValidation Loss
108.6563008.404563
207.9827007.516456
307.4924006.822610
406.4399006.113499
505.9354005.260022
605.0654003.957354
704.0233002.754403
803.0571001.811628
902.2512001.499738
1001.8324001.422374
1101.6800001.357308
1201.3785001.274240
1301.4391001.227453
1401.1567001.192840
1501.1670001.160652
1601.2516001.129808
1701.2057001.111851
1801.2158001.102168
1901.1413001.090495
2001.0672001.080318
2101.0870001.070692
2201.1339001.067977
2301.1307001.057029
2401.1404001.050590
2501.1626001.048084
2601.2482001.048646
2700.9977001.040575
2800.9627001.034017
2901.1333001.031854
3001.0409001.026881
3101.0247001.022427
3201.1111001.022164
3301.0543001.020084
3401.0024001.018956
3501.0748001.017130
3601.0088001.015510
3700.9376001.013033
3801.0320001.012199
3901.0850001.010654
4000.9086001.009053
4101.0712001.007447
4200.9856001.006729
4300.9824001.006776
4400.8748001.007428
4500.9619001.006944
4601.0256001.006055
4701.0318001.005276
4801.0897001.004892
4901.0297001.004751
5000.9533001.004719

"]},"metadata":{}},{"output_type":"stream","name":"stderr","text":["Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n","Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n","Non-default generation parameters: {'max_length': 512, 'min_length': 100, 'early_stopping': True, 'num_beams': 8, 'length_penalty': 2.0, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 1}\n","Your generation config was originally created from the model config, but the model config has changed since then. Unless you pass the `generation_config` argument to this model's `generate` calls, they will revert to the legacy behavior where the base `generate` parameterization is loaded from the model config instead. To avoid this behavior and this warning, we recommend you to overwrite the generation config model attribute before calling the model's `save_pretrained`, preferably also removing any generation kwargs from the model config. This warning will be raised to an exception in v4.41.\n"]},{"output_type":"execute_result","data":{"text/plain":["TrainOutput(global_step=500, training_loss=1.9869931230545044, metrics={'train_runtime': 3883.965, 'train_samples_per_second': 1.029, 'train_steps_per_second': 0.129, 'total_flos': 1.902131564544e+16, 'train_loss': 1.9869931230545044, 'epoch': 5.0})"]},"metadata":{},"execution_count":8}],"source":["# use Pegasus Large model as base for fine-tuning\n","model_name = 'google/pegasus-x-base'\n","train_dataset, val_dataset, test_dataset, tokenizer = prepare_data(model_name, train_dataset['input_text'], train_dataset['target_text'], eval_dataset['input_text'], eval_dataset['target_text'], test_dataset['input_text'], test_dataset['target_text'])\n","trainer = prepare_fine_tuning(model_name, tokenizer, train_dataset,val_dataset)\n","trainer.train()"]},{"cell_type":"code","source":["trainer.state.log_history"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"tfY-I39mZCp6","executionInfo":{"status":"ok","timestamp":1719137246759,"user_tz":-240,"elapsed":490,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"}},"outputId":"8c597881-8cb8-4b2f-b6b5-21dd20aa7aca"},"execution_count":9,"outputs":[{"output_type":"execute_result","data":{"text/plain":["[{'loss': 10.3923,\n"," 'grad_norm': 56.86820602416992,\n"," 'learning_rate': 4.9800000000000004e-05,\n"," 'epoch': 0.05,\n"," 'step': 5},\n"," {'loss': 8.6563,\n"," 'grad_norm': 25.03250503540039,\n"," 'learning_rate': 4.93e-05,\n"," 'epoch': 0.1,\n"," 'step': 10},\n"," {'eval_loss': 8.404562950134277,\n"," 'eval_runtime': 14.6424,\n"," 'eval_samples_per_second': 6.829,\n"," 'eval_steps_per_second': 3.415,\n"," 'epoch': 0.1,\n"," 'step': 10},\n"," {'loss': 8.2626,\n"," 'grad_norm': 9.512473106384277,\n"," 'learning_rate': 4.88e-05,\n"," 'epoch': 0.15,\n"," 'step': 15},\n"," {'loss': 7.9827,\n"," 'grad_norm': 12.38895034790039,\n"," 'learning_rate': 4.83e-05,\n"," 'epoch': 0.2,\n"," 'step': 20},\n"," {'eval_loss': 7.516456127166748,\n"," 'eval_runtime': 14.7041,\n"," 'eval_samples_per_second': 6.801,\n"," 'eval_steps_per_second': 3.4,\n"," 'epoch': 0.2,\n"," 'step': 20},\n"," {'loss': 7.6896,\n"," 'grad_norm': 7.310408592224121,\n"," 'learning_rate': 4.78e-05,\n"," 'epoch': 0.25,\n"," 'step': 25},\n"," {'loss': 7.4924,\n"," 'grad_norm': 7.191237926483154,\n"," 'learning_rate': 4.73e-05,\n"," 'epoch': 0.3,\n"," 'step': 30},\n"," {'eval_loss': 6.822609901428223,\n"," 'eval_runtime': 14.751,\n"," 'eval_samples_per_second': 6.779,\n"," 'eval_steps_per_second': 3.39,\n"," 'epoch': 0.3,\n"," 'step': 30},\n"," {'loss': 6.8697,\n"," 'grad_norm': 8.843598365783691,\n"," 'learning_rate': 4.6800000000000006e-05,\n"," 'epoch': 0.35,\n"," 'step': 35},\n"," {'loss': 6.4399,\n"," 'grad_norm': 8.858922004699707,\n"," 'learning_rate': 4.630000000000001e-05,\n"," 'epoch': 0.4,\n"," 'step': 40},\n"," {'eval_loss': 6.113498687744141,\n"," 'eval_runtime': 14.7457,\n"," 'eval_samples_per_second': 6.782,\n"," 'eval_steps_per_second': 3.391,\n"," 'epoch': 0.4,\n"," 'step': 40},\n"," {'loss': 6.2102,\n"," 'grad_norm': 12.814393043518066,\n"," 'learning_rate': 4.58e-05,\n"," 'epoch': 0.45,\n"," 'step': 45},\n"," {'loss': 5.9354,\n"," 'grad_norm': 17.39345359802246,\n"," 'learning_rate': 4.53e-05,\n"," 'epoch': 0.5,\n"," 'step': 50},\n"," {'eval_loss': 5.260022163391113,\n"," 'eval_runtime': 14.7378,\n"," 'eval_samples_per_second': 6.785,\n"," 'eval_steps_per_second': 3.393,\n"," 'epoch': 0.5,\n"," 'step': 50},\n"," {'loss': 5.4922,\n"," 'grad_norm': 17.503808975219727,\n"," 'learning_rate': 4.4800000000000005e-05,\n"," 'epoch': 0.55,\n"," 'step': 55},\n"," {'loss': 5.0654,\n"," 'grad_norm': 20.736469268798828,\n"," 'learning_rate': 4.43e-05,\n"," 'epoch': 0.6,\n"," 'step': 60},\n"," {'eval_loss': 3.9573535919189453,\n"," 'eval_runtime': 14.7444,\n"," 'eval_samples_per_second': 6.782,\n"," 'eval_steps_per_second': 3.391,\n"," 'epoch': 0.6,\n"," 'step': 60},\n"," {'loss': 4.6149,\n"," 'grad_norm': 26.956623077392578,\n"," 'learning_rate': 4.38e-05,\n"," 'epoch': 0.65,\n"," 'step': 65},\n"," {'loss': 4.0233,\n"," 'grad_norm': 24.659366607666016,\n"," 'learning_rate': 4.33e-05,\n"," 'epoch': 0.7,\n"," 'step': 70},\n"," {'eval_loss': 2.7544028759002686,\n"," 'eval_runtime': 14.7866,\n"," 'eval_samples_per_second': 6.763,\n"," 'eval_steps_per_second': 3.381,\n"," 'epoch': 0.7,\n"," 'step': 70},\n"," {'loss': 3.5547,\n"," 'grad_norm': 26.730026245117188,\n"," 'learning_rate': 4.2800000000000004e-05,\n"," 'epoch': 0.75,\n"," 'step': 75},\n"," {'loss': 3.0571,\n"," 'grad_norm': 26.001413345336914,\n"," 'learning_rate': 4.23e-05,\n"," 'epoch': 0.8,\n"," 'step': 80},\n"," {'eval_loss': 1.8116278648376465,\n"," 'eval_runtime': 14.7422,\n"," 'eval_samples_per_second': 6.783,\n"," 'eval_steps_per_second': 3.392,\n"," 'epoch': 0.8,\n"," 'step': 80},\n"," {'loss': 2.7085,\n"," 'grad_norm': 23.910728454589844,\n"," 'learning_rate': 4.18e-05,\n"," 'epoch': 0.85,\n"," 'step': 85},\n"," {'loss': 2.2512,\n"," 'grad_norm': 19.998367309570312,\n"," 'learning_rate': 4.13e-05,\n"," 'epoch': 0.9,\n"," 'step': 90},\n"," {'eval_loss': 1.4997384548187256,\n"," 'eval_runtime': 14.7435,\n"," 'eval_samples_per_second': 6.783,\n"," 'eval_steps_per_second': 3.391,\n"," 'epoch': 0.9,\n"," 'step': 90},\n"," {'loss': 2.0003,\n"," 'grad_norm': 65.87879180908203,\n"," 'learning_rate': 4.08e-05,\n"," 'epoch': 0.95,\n"," 'step': 95},\n"," {'loss': 1.8324,\n"," 'grad_norm': 10.388704299926758,\n"," 'learning_rate': 4.0300000000000004e-05,\n"," 'epoch': 1.0,\n"," 'step': 100},\n"," {'eval_loss': 1.4223742485046387,\n"," 'eval_runtime': 14.7589,\n"," 'eval_samples_per_second': 6.776,\n"," 'eval_steps_per_second': 3.388,\n"," 'epoch': 1.0,\n"," 'step': 100},\n"," {'loss': 1.6347,\n"," 'grad_norm': 7.265052795410156,\n"," 'learning_rate': 3.9800000000000005e-05,\n"," 'epoch': 1.05,\n"," 'step': 105},\n"," {'loss': 1.68,\n"," 'grad_norm': 6.810001373291016,\n"," 'learning_rate': 3.9300000000000007e-05,\n"," 'epoch': 1.1,\n"," 'step': 110},\n"," {'eval_loss': 1.3573081493377686,\n"," 'eval_runtime': 14.7436,\n"," 'eval_samples_per_second': 6.783,\n"," 'eval_steps_per_second': 3.391,\n"," 'epoch': 1.1,\n"," 'step': 110},\n"," {'loss': 1.3739,\n"," 'grad_norm': 4.246517181396484,\n"," 'learning_rate': 3.88e-05,\n"," 'epoch': 1.15,\n"," 'step': 115},\n"," {'loss': 1.3785,\n"," 'grad_norm': 3.701409101486206,\n"," 'learning_rate': 3.83e-05,\n"," 'epoch': 1.2,\n"," 'step': 120},\n"," {'eval_loss': 1.2742403745651245,\n"," 'eval_runtime': 14.7576,\n"," 'eval_samples_per_second': 6.776,\n"," 'eval_steps_per_second': 3.388,\n"," 'epoch': 1.2,\n"," 'step': 120},\n"," {'loss': 1.3735,\n"," 'grad_norm': 3.174663543701172,\n"," 'learning_rate': 3.7800000000000004e-05,\n"," 'epoch': 1.25,\n"," 'step': 125},\n"," {'loss': 1.4391,\n"," 'grad_norm': 2.5053186416625977,\n"," 'learning_rate': 3.73e-05,\n"," 'epoch': 1.3,\n"," 'step': 130},\n"," {'eval_loss': 1.2274529933929443,\n"," 'eval_runtime': 14.7772,\n"," 'eval_samples_per_second': 6.767,\n"," 'eval_steps_per_second': 3.384,\n"," 'epoch': 1.3,\n"," 'step': 130},\n"," {'loss': 1.3961,\n"," 'grad_norm': 3.804035186767578,\n"," 'learning_rate': 3.68e-05,\n"," 'epoch': 1.35,\n"," 'step': 135},\n"," {'loss': 1.1567,\n"," 'grad_norm': 3.619678020477295,\n"," 'learning_rate': 3.63e-05,\n"," 'epoch': 1.4,\n"," 'step': 140},\n"," {'eval_loss': 1.1928396224975586,\n"," 'eval_runtime': 14.7807,\n"," 'eval_samples_per_second': 6.766,\n"," 'eval_steps_per_second': 3.383,\n"," 'epoch': 1.4,\n"," 'step': 140},\n"," {'loss': 1.3604,\n"," 'grad_norm': 4.683546543121338,\n"," 'learning_rate': 3.58e-05,\n"," 'epoch': 1.45,\n"," 'step': 145},\n"," {'loss': 1.167,\n"," 'grad_norm': 5.887940883636475,\n"," 'learning_rate': 3.53e-05,\n"," 'epoch': 1.5,\n"," 'step': 150},\n"," {'eval_loss': 1.1606522798538208,\n"," 'eval_runtime': 14.7422,\n"," 'eval_samples_per_second': 6.783,\n"," 'eval_steps_per_second': 3.392,\n"," 'epoch': 1.5,\n"," 'step': 150},\n"," {'loss': 1.1064,\n"," 'grad_norm': 1.8478734493255615,\n"," 'learning_rate': 3.48e-05,\n"," 'epoch': 1.55,\n"," 'step': 155},\n"," {'loss': 1.2516,\n"," 'grad_norm': 2.0385944843292236,\n"," 'learning_rate': 3.430000000000001e-05,\n"," 'epoch': 1.6,\n"," 'step': 160},\n"," {'eval_loss': 1.1298075914382935,\n"," 'eval_runtime': 14.7456,\n"," 'eval_samples_per_second': 6.782,\n"," 'eval_steps_per_second': 3.391,\n"," 'epoch': 1.6,\n"," 'step': 160},\n"," {'loss': 1.2261,\n"," 'grad_norm': 1.3243741989135742,\n"," 'learning_rate': 3.38e-05,\n"," 'epoch': 1.65,\n"," 'step': 165},\n"," {'loss': 1.2057,\n"," 'grad_norm': 4.028717041015625,\n"," 'learning_rate': 3.33e-05,\n"," 'epoch': 1.7,\n"," 'step': 170},\n"," {'eval_loss': 1.1118507385253906,\n"," 'eval_runtime': 14.7418,\n"," 'eval_samples_per_second': 6.783,\n"," 'eval_steps_per_second': 3.392,\n"," 'epoch': 1.7,\n"," 'step': 170},\n"," {'loss': 1.2715,\n"," 'grad_norm': 6.269782543182373,\n"," 'learning_rate': 3.2800000000000004e-05,\n"," 'epoch': 1.75,\n"," 'step': 175},\n"," {'loss': 1.2158,\n"," 'grad_norm': 2.1877825260162354,\n"," 'learning_rate': 3.2300000000000006e-05,\n"," 'epoch': 1.8,\n"," 'step': 180},\n"," {'eval_loss': 1.102168321609497,\n"," 'eval_runtime': 14.7925,\n"," 'eval_samples_per_second': 6.76,\n"," 'eval_steps_per_second': 3.38,\n"," 'epoch': 1.8,\n"," 'step': 180},\n"," {'loss': 1.157,\n"," 'grad_norm': 4.225902080535889,\n"," 'learning_rate': 3.18e-05,\n"," 'epoch': 1.85,\n"," 'step': 185},\n"," {'loss': 1.1413,\n"," 'grad_norm': 1.3397098779678345,\n"," 'learning_rate': 3.13e-05,\n"," 'epoch': 1.9,\n"," 'step': 190},\n"," {'eval_loss': 1.0904947519302368,\n"," 'eval_runtime': 14.7905,\n"," 'eval_samples_per_second': 6.761,\n"," 'eval_steps_per_second': 3.381,\n"," 'epoch': 1.9,\n"," 'step': 190},\n"," {'loss': 1.201,\n"," 'grad_norm': 1.5967975854873657,\n"," 'learning_rate': 3.08e-05,\n"," 'epoch': 1.95,\n"," 'step': 195},\n"," {'loss': 1.0672,\n"," 'grad_norm': 1.5137038230895996,\n"," 'learning_rate': 3.03e-05,\n"," 'epoch': 2.0,\n"," 'step': 200},\n"," {'eval_loss': 1.080317735671997,\n"," 'eval_runtime': 14.7124,\n"," 'eval_samples_per_second': 6.797,\n"," 'eval_steps_per_second': 3.399,\n"," 'epoch': 2.0,\n"," 'step': 200},\n"," {'loss': 1.079,\n"," 'grad_norm': 1.3637304306030273,\n"," 'learning_rate': 2.98e-05,\n"," 'epoch': 2.05,\n"," 'step': 205},\n"," {'loss': 1.087,\n"," 'grad_norm': 1.6223095655441284,\n"," 'learning_rate': 2.93e-05,\n"," 'epoch': 2.1,\n"," 'step': 210},\n"," {'eval_loss': 1.0706923007965088,\n"," 'eval_runtime': 14.7733,\n"," 'eval_samples_per_second': 6.769,\n"," 'eval_steps_per_second': 3.384,\n"," 'epoch': 2.1,\n"," 'step': 210},\n"," {'loss': 1.0005,\n"," 'grad_norm': 3.351886749267578,\n"," 'learning_rate': 2.88e-05,\n"," 'epoch': 2.15,\n"," 'step': 215},\n"," {'loss': 1.1339,\n"," 'grad_norm': 1.337775468826294,\n"," 'learning_rate': 2.83e-05,\n"," 'epoch': 2.2,\n"," 'step': 220},\n"," {'eval_loss': 1.067976951599121,\n"," 'eval_runtime': 14.7391,\n"," 'eval_samples_per_second': 6.785,\n"," 'eval_steps_per_second': 3.392,\n"," 'epoch': 2.2,\n"," 'step': 220},\n"," {'loss': 0.9956,\n"," 'grad_norm': 1.9963575601577759,\n"," 'learning_rate': 2.7800000000000005e-05,\n"," 'epoch': 2.25,\n"," 'step': 225},\n"," {'loss': 1.1307,\n"," 'grad_norm': 1.9257625341415405,\n"," 'learning_rate': 2.7300000000000003e-05,\n"," 'epoch': 2.3,\n"," 'step': 230},\n"," {'eval_loss': 1.0570292472839355,\n"," 'eval_runtime': 14.7328,\n"," 'eval_samples_per_second': 6.788,\n"," 'eval_steps_per_second': 3.394,\n"," 'epoch': 2.3,\n"," 'step': 230},\n"," {'loss': 1.0377,\n"," 'grad_norm': 1.2416938543319702,\n"," 'learning_rate': 2.6800000000000004e-05,\n"," 'epoch': 2.35,\n"," 'step': 235},\n"," {'loss': 1.1404,\n"," 'grad_norm': 1.132546305656433,\n"," 'learning_rate': 2.6300000000000002e-05,\n"," 'epoch': 2.4,\n"," 'step': 240},\n"," {'eval_loss': 1.0505903959274292,\n"," 'eval_runtime': 14.7494,\n"," 'eval_samples_per_second': 6.78,\n"," 'eval_steps_per_second': 3.39,\n"," 'epoch': 2.4,\n"," 'step': 240},\n"," {'loss': 1.0407,\n"," 'grad_norm': 1.4931126832962036,\n"," 'learning_rate': 2.58e-05,\n"," 'epoch': 2.45,\n"," 'step': 245},\n"," {'loss': 1.1626,\n"," 'grad_norm': 1.2355014085769653,\n"," 'learning_rate': 2.5300000000000002e-05,\n"," 'epoch': 2.5,\n"," 'step': 250},\n"," {'eval_loss': 1.0480839014053345,\n"," 'eval_runtime': 14.75,\n"," 'eval_samples_per_second': 6.78,\n"," 'eval_steps_per_second': 3.39,\n"," 'epoch': 2.5,\n"," 'step': 250},\n"," {'loss': 1.0382,\n"," 'grad_norm': 1.5189692974090576,\n"," 'learning_rate': 2.48e-05,\n"," 'epoch': 2.55,\n"," 'step': 255},\n"," {'loss': 1.2482,\n"," 'grad_norm': 1.3987456560134888,\n"," 'learning_rate': 2.43e-05,\n"," 'epoch': 2.6,\n"," 'step': 260},\n"," {'eval_loss': 1.048646092414856,\n"," 'eval_runtime': 14.7822,\n"," 'eval_samples_per_second': 6.765,\n"," 'eval_steps_per_second': 3.382,\n"," 'epoch': 2.6,\n"," 'step': 260},\n"," {'loss': 1.0283,\n"," 'grad_norm': 1.708517074584961,\n"," 'learning_rate': 2.38e-05,\n"," 'epoch': 2.65,\n"," 'step': 265},\n"," {'loss': 0.9977,\n"," 'grad_norm': 1.2736974954605103,\n"," 'learning_rate': 2.3300000000000004e-05,\n"," 'epoch': 2.7,\n"," 'step': 270},\n"," {'eval_loss': 1.040575385093689,\n"," 'eval_runtime': 14.7914,\n"," 'eval_samples_per_second': 6.761,\n"," 'eval_steps_per_second': 3.38,\n"," 'epoch': 2.7,\n"," 'step': 270},\n"," {'loss': 1.0106,\n"," 'grad_norm': 1.0913769006729126,\n"," 'learning_rate': 2.2800000000000002e-05,\n"," 'epoch': 2.75,\n"," 'step': 275},\n"," {'loss': 0.9627,\n"," 'grad_norm': 1.482732892036438,\n"," 'learning_rate': 2.23e-05,\n"," 'epoch': 2.8,\n"," 'step': 280},\n"," {'eval_loss': 1.0340166091918945,\n"," 'eval_runtime': 14.74,\n"," 'eval_samples_per_second': 6.784,\n"," 'eval_steps_per_second': 3.392,\n"," 'epoch': 2.8,\n"," 'step': 280},\n"," {'loss': 1.1931,\n"," 'grad_norm': 1.7235827445983887,\n"," 'learning_rate': 2.18e-05,\n"," 'epoch': 2.85,\n"," 'step': 285},\n"," {'loss': 1.1333,\n"," 'grad_norm': 2.101365327835083,\n"," 'learning_rate': 2.13e-05,\n"," 'epoch': 2.9,\n"," 'step': 290},\n"," {'eval_loss': 1.031854271888733,\n"," 'eval_runtime': 14.7309,\n"," 'eval_samples_per_second': 6.788,\n"," 'eval_steps_per_second': 3.394,\n"," 'epoch': 2.9,\n"," 'step': 290},\n"," {'loss': 1.0604,\n"," 'grad_norm': 2.4003348350524902,\n"," 'learning_rate': 2.08e-05,\n"," 'epoch': 2.95,\n"," 'step': 295},\n"," {'loss': 1.0409,\n"," 'grad_norm': 1.7074090242385864,\n"," 'learning_rate': 2.0300000000000002e-05,\n"," 'epoch': 3.0,\n"," 'step': 300},\n"," {'eval_loss': 1.0268809795379639,\n"," 'eval_runtime': 14.7562,\n"," 'eval_samples_per_second': 6.777,\n"," 'eval_steps_per_second': 3.388,\n"," 'epoch': 3.0,\n"," 'step': 300},\n"," {'loss': 1.0735,\n"," 'grad_norm': 1.3225458860397339,\n"," 'learning_rate': 1.9800000000000004e-05,\n"," 'epoch': 3.05,\n"," 'step': 305},\n"," {'loss': 1.0247,\n"," 'grad_norm': 3.100217342376709,\n"," 'learning_rate': 1.93e-05,\n"," 'epoch': 3.1,\n"," 'step': 310},\n"," {'eval_loss': 1.0224272012710571,\n"," 'eval_runtime': 14.7484,\n"," 'eval_samples_per_second': 6.78,\n"," 'eval_steps_per_second': 3.39,\n"," 'epoch': 3.1,\n"," 'step': 310},\n"," {'loss': 1.0333,\n"," 'grad_norm': 1.6710927486419678,\n"," 'learning_rate': 1.88e-05,\n"," 'epoch': 3.15,\n"," 'step': 315},\n"," {'loss': 1.1111,\n"," 'grad_norm': 1.2385449409484863,\n"," 'learning_rate': 1.83e-05,\n"," 'epoch': 3.2,\n"," 'step': 320},\n"," {'eval_loss': 1.0221635103225708,\n"," 'eval_runtime': 14.7439,\n"," 'eval_samples_per_second': 6.782,\n"," 'eval_steps_per_second': 3.391,\n"," 'epoch': 3.2,\n"," 'step': 320},\n"," {'loss': 1.0571,\n"," 'grad_norm': 1.0592495203018188,\n"," 'learning_rate': 1.78e-05,\n"," 'epoch': 3.25,\n"," 'step': 325},\n"," {'loss': 1.0543,\n"," 'grad_norm': 1.3374934196472168,\n"," 'learning_rate': 1.73e-05,\n"," 'epoch': 3.3,\n"," 'step': 330},\n"," {'eval_loss': 1.0200837850570679,\n"," 'eval_runtime': 14.7409,\n"," 'eval_samples_per_second': 6.784,\n"," 'eval_steps_per_second': 3.392,\n"," 'epoch': 3.3,\n"," 'step': 330},\n"," {'loss': 1.0673,\n"," 'grad_norm': 1.271950125694275,\n"," 'learning_rate': 1.6800000000000002e-05,\n"," 'epoch': 3.35,\n"," 'step': 335},\n"," {'loss': 1.0024,\n"," 'grad_norm': 1.374512791633606,\n"," 'learning_rate': 1.63e-05,\n"," 'epoch': 3.4,\n"," 'step': 340},\n"," {'eval_loss': 1.0189564228057861,\n"," 'eval_runtime': 14.7431,\n"," 'eval_samples_per_second': 6.783,\n"," 'eval_steps_per_second': 3.391,\n"," 'epoch': 3.4,\n"," 'step': 340},\n"," {'loss': 0.9744,\n"," 'grad_norm': 0.997424304485321,\n"," 'learning_rate': 1.58e-05,\n"," 'epoch': 3.45,\n"," 'step': 345},\n"," {'loss': 1.0748,\n"," 'grad_norm': 7.5672526359558105,\n"," 'learning_rate': 1.53e-05,\n"," 'epoch': 3.5,\n"," 'step': 350},\n"," {'eval_loss': 1.0171301364898682,\n"," 'eval_runtime': 14.7331,\n"," 'eval_samples_per_second': 6.787,\n"," 'eval_steps_per_second': 3.394,\n"," 'epoch': 3.5,\n"," 'step': 350},\n"," {'loss': 0.9102,\n"," 'grad_norm': 0.9550947546958923,\n"," 'learning_rate': 1.48e-05,\n"," 'epoch': 3.55,\n"," 'step': 355},\n"," {'loss': 1.0088,\n"," 'grad_norm': 0.8230323791503906,\n"," 'learning_rate': 1.43e-05,\n"," 'epoch': 3.6,\n"," 'step': 360},\n"," {'eval_loss': 1.0155096054077148,\n"," 'eval_runtime': 14.7398,\n"," 'eval_samples_per_second': 6.784,\n"," 'eval_steps_per_second': 3.392,\n"," 'epoch': 3.6,\n"," 'step': 360},\n"," {'loss': 1.1432,\n"," 'grad_norm': 1.8674002885818481,\n"," 'learning_rate': 1.3800000000000002e-05,\n"," 'epoch': 3.65,\n"," 'step': 365},\n"," {'loss': 0.9376,\n"," 'grad_norm': 1.018883466720581,\n"," 'learning_rate': 1.3300000000000001e-05,\n"," 'epoch': 3.7,\n"," 'step': 370},\n"," {'eval_loss': 1.0130330324172974,\n"," 'eval_runtime': 14.7356,\n"," 'eval_samples_per_second': 6.786,\n"," 'eval_steps_per_second': 3.393,\n"," 'epoch': 3.7,\n"," 'step': 370},\n"," {'loss': 1.1091,\n"," 'grad_norm': 1.3810933828353882,\n"," 'learning_rate': 1.2800000000000001e-05,\n"," 'epoch': 3.75,\n"," 'step': 375},\n"," {'loss': 1.032,\n"," 'grad_norm': 3.0937328338623047,\n"," 'learning_rate': 1.23e-05,\n"," 'epoch': 3.8,\n"," 'step': 380},\n"," {'eval_loss': 1.012198567390442,\n"," 'eval_runtime': 14.7296,\n"," 'eval_samples_per_second': 6.789,\n"," 'eval_steps_per_second': 3.395,\n"," 'epoch': 3.8,\n"," 'step': 380},\n"," {'loss': 1.0203,\n"," 'grad_norm': 0.9434934854507446,\n"," 'learning_rate': 1.18e-05,\n"," 'epoch': 3.85,\n"," 'step': 385},\n"," {'loss': 1.085,\n"," 'grad_norm': 1.0485066175460815,\n"," 'learning_rate': 1.13e-05,\n"," 'epoch': 3.9,\n"," 'step': 390},\n"," {'eval_loss': 1.0106538534164429,\n"," 'eval_runtime': 14.7799,\n"," 'eval_samples_per_second': 6.766,\n"," 'eval_steps_per_second': 3.383,\n"," 'epoch': 3.9,\n"," 'step': 390},\n"," {'loss': 0.978,\n"," 'grad_norm': 0.9402391314506531,\n"," 'learning_rate': 1.08e-05,\n"," 'epoch': 3.95,\n"," 'step': 395},\n"," {'loss': 0.9086,\n"," 'grad_norm': 1.6019457578659058,\n"," 'learning_rate': 1.03e-05,\n"," 'epoch': 4.0,\n"," 'step': 400},\n"," {'eval_loss': 1.0090529918670654,\n"," 'eval_runtime': 14.7133,\n"," 'eval_samples_per_second': 6.797,\n"," 'eval_steps_per_second': 3.398,\n"," 'epoch': 4.0,\n"," 'step': 400},\n"," {'loss': 1.0391,\n"," 'grad_norm': 1.0719348192214966,\n"," 'learning_rate': 9.800000000000001e-06,\n"," 'epoch': 4.05,\n"," 'step': 405},\n"," {'loss': 1.0712,\n"," 'grad_norm': 2.5889086723327637,\n"," 'learning_rate': 9.3e-06,\n"," 'epoch': 4.1,\n"," 'step': 410},\n"," {'eval_loss': 1.0074470043182373,\n"," 'eval_runtime': 14.7728,\n"," 'eval_samples_per_second': 6.769,\n"," 'eval_steps_per_second': 3.385,\n"," 'epoch': 4.1,\n"," 'step': 410},\n"," {'loss': 0.9825,\n"," 'grad_norm': 1.3023167848587036,\n"," 'learning_rate': 8.8e-06,\n"," 'epoch': 4.15,\n"," 'step': 415},\n"," {'loss': 0.9856,\n"," 'grad_norm': 1.2483292818069458,\n"," 'learning_rate': 8.3e-06,\n"," 'epoch': 4.2,\n"," 'step': 420},\n"," {'eval_loss': 1.0067288875579834,\n"," 'eval_runtime': 14.7692,\n"," 'eval_samples_per_second': 6.771,\n"," 'eval_steps_per_second': 3.385,\n"," 'epoch': 4.2,\n"," 'step': 420},\n"," {'loss': 1.0521,\n"," 'grad_norm': 1.4109359979629517,\n"," 'learning_rate': 7.8e-06,\n"," 'epoch': 4.25,\n"," 'step': 425},\n"," {'loss': 0.9824,\n"," 'grad_norm': 1.1083984375,\n"," 'learning_rate': 7.2999999999999996e-06,\n"," 'epoch': 4.3,\n"," 'step': 430},\n"," {'eval_loss': 1.0067758560180664,\n"," 'eval_runtime': 14.7271,\n"," 'eval_samples_per_second': 6.79,\n"," 'eval_steps_per_second': 3.395,\n"," 'epoch': 4.3,\n"," 'step': 430},\n"," {'loss': 0.9235,\n"," 'grad_norm': 1.0264437198638916,\n"," 'learning_rate': 6.800000000000001e-06,\n"," 'epoch': 4.35,\n"," 'step': 435},\n"," {'loss': 0.8748,\n"," 'grad_norm': 1.2524964809417725,\n"," 'learning_rate': 6.300000000000001e-06,\n"," 'epoch': 4.4,\n"," 'step': 440},\n"," {'eval_loss': 1.0074278116226196,\n"," 'eval_runtime': 14.7979,\n"," 'eval_samples_per_second': 6.758,\n"," 'eval_steps_per_second': 3.379,\n"," 'epoch': 4.4,\n"," 'step': 440},\n"," {'loss': 1.0941,\n"," 'grad_norm': 1.040086030960083,\n"," 'learning_rate': 5.8e-06,\n"," 'epoch': 4.45,\n"," 'step': 445},\n"," {'loss': 0.9619,\n"," 'grad_norm': 1.1142313480377197,\n"," 'learning_rate': 5.3e-06,\n"," 'epoch': 4.5,\n"," 'step': 450},\n"," {'eval_loss': 1.006943941116333,\n"," 'eval_runtime': 14.7328,\n"," 'eval_samples_per_second': 6.788,\n"," 'eval_steps_per_second': 3.394,\n"," 'epoch': 4.5,\n"," 'step': 450},\n"," {'loss': 1.1107,\n"," 'grad_norm': 1.2563225030899048,\n"," 'learning_rate': 4.800000000000001e-06,\n"," 'epoch': 4.55,\n"," 'step': 455},\n"," {'loss': 1.0256,\n"," 'grad_norm': 0.9731860756874084,\n"," 'learning_rate': 4.2999999999999995e-06,\n"," 'epoch': 4.6,\n"," 'step': 460},\n"," {'eval_loss': 1.0060549974441528,\n"," 'eval_runtime': 14.7899,\n"," 'eval_samples_per_second': 6.761,\n"," 'eval_steps_per_second': 3.381,\n"," 'epoch': 4.6,\n"," 'step': 460},\n"," {'loss': 0.9513,\n"," 'grad_norm': 1.9557914733886719,\n"," 'learning_rate': 3.8e-06,\n"," 'epoch': 4.65,\n"," 'step': 465},\n"," {'loss': 1.0318,\n"," 'grad_norm': 1.3201520442962646,\n"," 'learning_rate': 3.3e-06,\n"," 'epoch': 4.7,\n"," 'step': 470},\n"," {'eval_loss': 1.0052762031555176,\n"," 'eval_runtime': 14.7791,\n"," 'eval_samples_per_second': 6.766,\n"," 'eval_steps_per_second': 3.383,\n"," 'epoch': 4.7,\n"," 'step': 470},\n"," {'loss': 1.0001,\n"," 'grad_norm': 1.0211982727050781,\n"," 'learning_rate': 2.8000000000000003e-06,\n"," 'epoch': 4.75,\n"," 'step': 475},\n"," {'loss': 1.0897,\n"," 'grad_norm': 1.4876761436462402,\n"," 'learning_rate': 2.3e-06,\n"," 'epoch': 4.8,\n"," 'step': 480},\n"," {'eval_loss': 1.0048924684524536,\n"," 'eval_runtime': 14.7341,\n"," 'eval_samples_per_second': 6.787,\n"," 'eval_steps_per_second': 3.393,\n"," 'epoch': 4.8,\n"," 'step': 480},\n"," {'loss': 1.0324,\n"," 'grad_norm': 1.1755719184875488,\n"," 'learning_rate': 1.8e-06,\n"," 'epoch': 4.85,\n"," 'step': 485},\n"," {'loss': 1.0297,\n"," 'grad_norm': 18.036903381347656,\n"," 'learning_rate': 1.3e-06,\n"," 'epoch': 4.9,\n"," 'step': 490},\n"," {'eval_loss': 1.0047513246536255,\n"," 'eval_runtime': 14.7701,\n"," 'eval_samples_per_second': 6.77,\n"," 'eval_steps_per_second': 3.385,\n"," 'epoch': 4.9,\n"," 'step': 490},\n"," {'loss': 1.0455,\n"," 'grad_norm': 1.2812525033950806,\n"," 'learning_rate': 8.000000000000001e-07,\n"," 'epoch': 4.95,\n"," 'step': 495},\n"," {'loss': 0.9533,\n"," 'grad_norm': 1.023209810256958,\n"," 'learning_rate': 3.0000000000000004e-07,\n"," 'epoch': 5.0,\n"," 'step': 500},\n"," {'eval_loss': 1.0047188997268677,\n"," 'eval_runtime': 14.7549,\n"," 'eval_samples_per_second': 6.777,\n"," 'eval_steps_per_second': 3.389,\n"," 'epoch': 5.0,\n"," 'step': 500},\n"," {'train_runtime': 3883.965,\n"," 'train_samples_per_second': 1.029,\n"," 'train_steps_per_second': 0.129,\n"," 'total_flos': 1.902131564544e+16,\n"," 'train_loss': 1.9869931230545044,\n"," 'epoch': 5.0,\n"," 'step': 500}]"]},"metadata":{},"execution_count":9}]},{"cell_type":"code","source":["import pandas as pd\n","df=pd.DataFrame(trainer.state.log_history)\n","import pandas as pd\n","import matplotlib.pyplot as plt\n","\n","# Assuming df is already defined, and train_loss and eval_loss are subsets of df\n","train_loss = df[['loss', 'step']]\n","eval_loss = df[['eval_loss', 'step']]\n","\n","# Remove NaN rows in both dataframes\n","train_loss_clean = train_loss.dropna()\n","eval_loss_clean = eval_loss.dropna()\n","\n","# Plotting the loss vs step for train_loss\n","plt.figure(figsize=(5, 2))\n","plt.plot(train_loss_clean['step'], train_loss_clean['loss'], label='Train Loss', color='blue')\n","plt.xlabel('Step')\n","plt.ylabel('Loss')\n","plt.title('Train Loss vs Step')\n","plt.legend()\n","plt.grid(True)\n","plt.show()\n","\n","# Plotting the loss vs step for eval_loss\n","plt.figure(figsize=(5, 2))\n","plt.plot(eval_loss_clean['step'], eval_loss_clean['eval_loss'], label='Eval Loss', color='red')\n","plt.xlabel('Step')\n","plt.ylabel('Loss')\n","plt.title('Eval Loss vs Step')\n","plt.legend()\n","plt.grid(True)\n","plt.show()\n","\n","# Plotting both losses together\n","plt.figure(figsize=(5, 2))\n","plt.plot(train_loss_clean['step'], train_loss_clean['loss'], label='Train Loss', color='blue')\n","plt.plot(eval_loss_clean['step'], eval_loss_clean['eval_loss'], label='Eval Loss', color='red')\n","plt.xlabel('Step')\n","plt.ylabel('Loss')\n","plt.title('Train and Eval Loss vs Step')\n","plt.legend()\n","plt.grid(True)\n","plt.show()\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":734},"id":"sXjiixD56uwr","executionInfo":{"status":"ok","timestamp":1719137251696,"user_tz":-240,"elapsed":1621,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"}},"outputId":"d312e5c6-4562-4b0d-d43a-a1a4946574d1"},"execution_count":10,"outputs":[{"output_type":"display_data","data":{"text/plain":["

"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAdMAAADvCAYAAACpMT7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAVklEQVR4nO3dd1RU1/YH8O/Qhl5UqtJUVEAhgqJgzQOssUaDJU+Micb2osvEPI0ioLFEYzQ2oilq4rNFBY2xIRYs2LA3YkGwUESld+b8/ji/GRyZoc3ApezPWrOcuW323TOy55x77r0ixhgDIYQQQqpNQ+gACCGEkPqOiikhhBCiIiqmhBBCiIqomBJCCCEqomJKCCGEqIiKKSGEEKIiKqaEEEKIiqiYEkIIISqiYkoIIYSoiIopITVk/PjxcHBwEDoMQkgtoGJKGh2RSFSpx6lTp4QOVc6pU6cgEomwZ88eoUMR3NmzZ9G/f380b94curq6sLOzw6BBg7B9+3bZMrm5uQgJCalznyNpmLSEDoCQ2vbHH3/Ivf79998RGRlZZrqzs7NK7/Pzzz9DIpGotA1S1p9//omAgAC89957mDFjBszMzBAfH4/o6Gj8/PPPGDNmDABeTENDQwEAvXv3FjBi0hhQMSWNzscffyz3+sKFC4iMjCwz/V25ubnQ19ev9Ptoa2tXKz5SvpCQELi4uODChQvQ0dGRm5eamipQVKSxo25eQhTo3bs32rdvj9jYWPTs2RP6+vr45ptvAAD79+/HwIEDYWNjA7FYjFatWmHRokUoKSmR28a7x0yfPHkCkUiE77//Hps2bUKrVq0gFovRuXNnXL58WW2xP378GCNHjkSTJk2gr6+Prl274u+//y6z3Nq1a+Hq6gp9fX2YmZmhU6dOct2kWVlZmDlzJhwcHCAWi2FhYQF/f39cvXpV6Xvv2bMHIpEIp0+fLjNv48aNEIlEuH37NgAgOTkZn3zyCVq0aAGxWAxra2sMGTIET548KXf/Hj16hM6dO5cppABgYWEBgOfa3NwcABAaGirrug8JCZEte//+fYwYMQJNmjSBrq4uOnXqhAMHDshtb8uWLRCJRIiOjsbnn3+Opk2bwtjYGOPGjcObN2/KjZM0LtQyJUSJV69eoX///hg1ahQ+/vhjWFpaAuB/YA0NDTFr1iwYGhrixIkTWLBgATIzM7FixYoKt7t9+3ZkZWXh888/h0gkwvLlyzF8+HA8fvxY5dZsSkoKfHx8kJubiy+++AJNmzbF1q1bMXjwYOzZswfDhg0DwLugv/jiC4wYMQIzZsxAfn4+bt68iYsXL8q6SSdPnow9e/Zg+vTpcHFxwatXr3D27Fncu3cPHh4eCt9/4MCBMDQ0xO7du9GrVy+5ebt27YKrqyvat28PAPjwww9x584d/Oc//4GDgwNSU1MRGRmJxMTEcgdu2dvbIyoqCs+ePUOLFi0ULmNubo6wsDBMmTIFw4YNw/DhwwEAbm5uAIA7d+6gW7duaN68OebMmQMDAwPs3r0bQ4cOxd69e2V5kpo+fTpMTU0REhKCuLg4hIWFISEhQXYcmxAwQhq5adOmsXf/K/Tq1YsBYD/99FOZ5XNzc8tM+/zzz5m+vj7Lz8+XTQsMDGT29vay1/Hx8QwAa9q0KXv9+rVs+v79+xkA9tdff5Ub58mTJxkA9ueffypdZubMmQwAO3PmjGxaVlYWc3R0ZA4ODqykpIQxxtiQIUOYq6true9nYmLCpk2bVu4yiowePZpZWFiw4uJi2bSkpCSmoaHBFi5cyBhj7M2bNwwAW7FiRZW3/+uvvzIATEdHh73//vssKCiInTlzRrZvUi9fvmQAWHBwcJlt+Pr6sg4dOsh9XhKJhPn4+DAnJyfZtM2bNzMAzNPTkxUWFsqmL1++nAFg+/fvr3L8pGGibl5ClBCLxfjkk0/KTNfT05M9z8rKQlpaGnr06IHc3Fzcv3+/wu0GBATAzMxM9rpHjx4AePesqg4dOgQvLy90795dNs3Q0BCTJk3CkydPcPfuXQCAqakpnj17Vm73sqmpKS5evIgXL15UKYaAgACkpqbKjaLds2cPJBIJAgICAPAc6ujo4NSpU1XuLp0wYQKOHDmC3r174+zZs1i0aBF69OgBJycnnD9/vsL1X79+jRMnTuCjjz6SfX5paWl49eoV+vbtiwcPHuD58+dy60yaNEmu12DKlCnQ0tLCoUOHqhQ7abiomBKiRPPmzRUel7tz5w6GDRsGExMTGBsbw9zcXDZ4KSMjo8Lt2tnZyb2WFlZ1HINLSEhA27Zty0yXjkxOSEgAAPz3v/+FoaEhvLy84OTkhGnTpuHcuXNy6yxfvhy3b9+Gra0tvLy8EBISUqmC369fP5iYmGDXrl2yabt27cJ7772HNm3aAOA/VL777jscPnwYlpaW6NmzJ5YvX47k5ORK7Wffvn1x9OhRpKenIzo6GtOmTUNCQgI++OCDCgchPXz4EIwxBAUFwdzcXO4RHBwMoOxAJicnJ7nXhoaGsLa2rvD4Lmk8qJgSosTbLVCp9PR09OrVCzdu3MDChQvx119/ITIyEt999x0AVOpUGE1NTYXTGWOqBVwFzs7OiIuLw86dO9G9e3fs3bsX3bt3lxUTAPjoo4/w+PFjrF27FjY2NlixYgVcXV1x+PDhcrctFosxdOhQhIeHo7i4GM+fP8e5c+dkrVKpmTNn4p9//sHSpUuhq6uLoKAgODs749q1a5XeD319ffTo0QPr1q3D/Pnz8ebNmwrjk35GX331FSIjIxU+WrduXekYCAFoABIhVXLq1Cm8evUK+/btQ8+ePWXT4+PjBYyqlL29PeLi4spMl3Y/29vby6YZGBggICAAAQEBKCwsxPDhw7F48WLMnTsXurq6AABra2tMnToVU6dORWpqKjw8PLB48WL079+/3DgCAgKwdetWREVF4d69e2CMlSmmANCqVSt8+eWX+PLLL/HgwQO89957WLlyJbZt21blfe/UqRMAICkpCQCUDgxq2bIlAH7qkp+fX6W2/eDBA7z//vuy19nZ2UhKSsKAAQOqHCdpmKhlSkgVSFuVb7ciCwsLsWHDBqFCkjNgwABcunQJMTExsmk5OTnYtGkTHBwc4OLiAoCPVH6bjo4OXFxcwBhDUVERSkpKynRZW1hYwMbGBgUFBRXG4efnhyZNmmDXrl3YtWsXvLy84OjoKJufm5uL/Px8uXVatWoFIyOjCrcfFRWlcLr0+KW0m1t6TnB6enqZ/ejduzc2btwoK7xve/nyZZlpmzZtQlFRkex1WFgYiouLK/xRQRoPapkSUgU+Pj4wMzNDYGAgvvjiC4hEIvzxxx+12kW7d+9ehQOdAgMDMWfOHOzYsQP9+/fHF198gSZNmmDr1q2Ij4/H3r17oaHBfz/36dMHVlZW6NatGywtLXHv3j2sW7cOAwcOhJGREdLT09GiRQuMGDEC7u7uMDQ0xPHjx3H58mWsXLmywhi1tbUxfPhw7Ny5Ezk5Ofj+++/l5v/zzz/w9fXFRx99BBcXF2hpaSE8PBwpKSkYNWpUudseMmQIHB0dMWjQILRq1Qo5OTk4fvw4/vrrL3Tu3BmDBg0CwLvpXVxcsGvXLrRp0wZNmjRB+/bt0b59e6xfvx7du3dHhw4dMHHiRLRs2RIpKSmIiYnBs2fPcOPGDbn3LCwslMUbFxeHDRs2oHv37hg8eHCFuSCNhJBDiQmpC5SdGqPs1JFz586xrl27Mj09PWZjY8O+/vprdvToUQaAnTx5UracslNjFJ0OAiWncLxNemqMsof0dJhHjx6xESNGMFNTU6arq8u8vLzYwYMH5ba1ceNG1rNnT9a0aVMmFotZq1at2OzZs1lGRgZjjLGCggI2e/Zs5u7uzoyMjJiBgQFzd3dnGzZsKDfGt0VGRjIATCQSsadPn8rNS0tLY9OmTWPt2rVjBgYGzMTEhHXp0oXt3r27wu3u2LGDjRo1irVq1Yrp6ekxXV1d5uLiwubNm8cyMzPllj1//jzz9PRkOjo6ZXL86NEjNm7cOGZlZcW0tbVZ8+bN2QcffMD27NkjW0Z6aszp06fZpEmTmJmZGTM0NGRjx45lr169qnQuSMMnYqwWf1ITQkg9smXLFnzyySe4fPmy7JgsIYrQMVNCCCFERVRMCSGEEBVRMSWEEEJURMdMCSGEEBVRy5QQQghRERVTQgghREV00QYFJBIJXrx4ASMjI7pXISGENGKMMWRlZcHGxkZ20RNFqJgq8OLFC9ja2godBiGEkDri6dOnSm9GD1AxVcjIyAgAT56xsXGl1ysqKsKxY8fQp08fuXsfEspNeSg35aP8KEe5UU5ducnMzIStra2sLihDxVQBadeusbFxlYupvr4+jI2N6Yv9DsqNcpSb8lF+lKPcKKfu3FR0yI8GIBFCCCEqomJKCCGEqIi6eWvIs2fAlStA06ZAjx5CR0MIIaQmUTGtIbt3A19+CYwcScWUkIaEMYbi4mKUlJQIHQqKioqgpaWF/Pz8OhFPXVLZ3GhqakJLS0vl0yCpmNaQ1q35v48eCRsHIUR9CgsLkZSUhNzcXKFDAcALu5WVFZ4+fUrnxL+jKrnR19eHtbU1dHR0qv1+VExrSKtW/N+HDwHGAPqeE1K/SSQSxMfHQ1NTEzY2NtDR0RG8gEkkEmRnZ8PQ0LDcCwo0RpXJDWMMhYWFePnyJeLj4+Hk5FTtPApaTKOjo7FixQrExsYiKSkJ4eHhGDp0qGw+YwzBwcH4+eefkZ6ejm7duiEsLAxOTk7lbnf9+vVYsWIFkpOT4e7ujrVr18LLy6uG90Zey5b838xMIC0NMDev1bcnhKhZYWEhJBIJbG1toa+vL3Q4AHjBKCwshK6uLhXTd1Q2N3p6etDW1kZCQoJs+eoQNPs5OTlwd3fH+vXrFc5fvnw51qxZg59++gkXL16EgYEB+vbti/z8fKXb3LVrF2bNmoXg4GBcvXoV7u7u6Nu3L1JTU2tqNxTS0wOkF8ugrl5CGg4qWg2POj5TQVum/fv3R//+/RXOY4xh9erVmD9/PoYMGQIA+P3332FpaYmIiAiMGjVK4Xo//PADJk6ciE8++QQA8NNPP+Hvv//Gb7/9hjlz5ihcp6CgAAUFBbLXmZmZAPgB7KKiokrvj3RZ6b8tW2ri2TMN3L9fDE/Pxn2nu3dzQ0pRbspXV/JTVFQExhgkEgkkEomgsUhJ76ApjYuUqkpuJBIJGGMoKiqCpqam3LzKfu/q7DHT+Ph4JCcnw8/PTzbNxMQEXbp0QUxMjMJiWlhYiNjYWMydO1c2TUNDA35+foiJiVH6XkuXLkVoaGiZ6ceOHatWd05kZCQAQEfnPQD2OHLkIczM4qq8nYZImhtSFuWmfELnR0tLC1ZWVsjOzkZhYaGgsbwrKytL6BDqrMrkprCwEHl5eYiOjkZxcbHcvMoONquzxTQ5ORkAYGlpKTfd0tJSNu9daWlpKCkpUbjO/fv3lb7X3LlzMWvWLNlr6bUY+/TpU+XLCUZGRsLf3x/a2tq4fVsDx48DmpptMGBAq0pvpyF6NzekFOWmfHUlP/n5+Xj69CkMDQ2rfVxN3aR3NBHiDlctW7bEjBkzMGPGjFp938qqSm7y8/Ohp6eHnj17lvlspT2VFamzxbQ2icViiMXiMtO1tbWr9Z9Xul7btvz148ca0Nam4yxA9XPaGFBuyid0fkpKSiASiaChoVFnjptKuy+lcSlSUSEJDg5GSEhIld/78uXLMDAwUCkXvXv3xnvvvYfVq1dXexvKVCY3UhoaGhCJRAq/Y5X9ztXZYmplZQUASElJgbW1tWx6SkoK3nvvPYXrNGvWDJqamkhJSZGbnpKSIttebXr79BhCCBFCUlKS7PmuXbuwYMECxMWVHnYyNDSUPWeMoaSkBFpaFZcGczpFQU7d+HmlgKOjI6ysrBAVFSWblpmZiYsXL8Lb21vhOjo6OvD09JRbRyKRICoqSuk6NUlaTNPSgIyMWn97QkgNYwzIyRHmwSo5ptHKykr2MDExgUgkkr2+f/8+jIyMcPjwYXh6ekIsFuPs2bN49OgRhgwZAktLSxgaGqJz5844fvy43HYdHBzkWpQikQi//PILhg0bBn19fTg5OeHAgQMq5Xfv3r1wdXWFWCyGg4MDVq5cKTd/w4YNcHJygq6uLiwtLTFixAjZvD179sDHxwcGBgZo2rQp/Pz8kJOTo1I85RG0ZZqdnY2HbzXb4uPjcf36dTRp0gR2dnaYOXMmvv32Wzg5OcHR0RFBQUGwsbGROxfV19cXw4YNw/Tp0wEAs2bNQmBgIDp16gQvLy+sXr0aOTk5stG9tcnYGLCwAFJT+ekxHh61HgIhpAbl5gJvNexqVXY2PwVPHebMmYPvv/8eLVu2hJmZGZ4+fYoBAwZg8eLFEIvF+P333zFo0CDExcXBzs5O6XZCQ0OxfPlyrFixAmvXrsXYsWORkJCAJk2aVDmm2NhYfPTRRwgJCUFAQADOnz+PqVOnomnTphg/fjyuXLmCL774An/88Qd8fHzw+vVrnDlzBgBvjY8dOxahoaEYNWoUcnJycObMGdkI3xrBBHTy5EkGoMwjMDCQMcaYRCJhQUFBzNLSkonFYubr68vi4uLktmFvb8+Cg4Plpq1du5bZ2dkxHR0d5uXlxS5cuFCluDIyMhgAlpGRUaX1CgsLWUREBCssLJRN8/ZmDGBs164qbarBUZQbwlFuyldX8pOXl8fu3r3L8vLyZNOys/n/byEe2dmMlZSUsDdv3rCSkpJK7cPmzZuZiYmJ7LX0b3BERESF67q6urK1a9fKXtvb27NVq1bJXgNg8+fPfys32QwAO3z4sNJt9urVi82YMUPhvDFjxjB/f3+5abNnz2YuLi6MMcb27t3LjI2NWWZmZpl1Y2NjGQB248aNSuVG0WcrVdl6IGjLtHfv3uX+UhCJRFi4cCEWLlyodJknT56UmTZ9+nRZS1VorVsDMTF04QZCGiJ9fd5CFOq91dXQ6tSpk9zr7OxshISE4O+//0ZSUhKKi4uRl5eHxMTEcrfj5uYme25gYABjY+NqXzDn3r17smsMSHXr1g2rV69GSUkJ/P39YW9vj5YtW6Jfv37o16+frIvZ3d0dvr6+6N69O/r06YO+fftixIgRMDMzq1YslVFnj5k2FNIL3tMgJEIaHpEIMDAQ5qHOM2EMDAzkXn/11VcIDw/HkiVLcObMGVy/fh0dOnSo8Pzad0e+ikSiGruYhJGREa5evYodO3bA2toaCxYsgLu7O9LT06GpqYmjR49i9+7dcHFxwdq1a9G2bVvEx8fXSCwAFdMaRyN6CSH1zblz5zB+/HgMGzYMHTp0gJWVlcJewJrk7OyMc+fOlYmrTZs2sqsUaWlpwc/PD8uXL8fNmzfx5MkTnDhxAgAv5F27dkVISAiuXbsGHR0dhIeH11i8dfbUmIaCbsVGCKlvnJycsG/fPgwaNAgikQhBQUE11sJ8+fIlrl+/LjfN2toaX375JTp37oxFixYhICAAMTExWLduHTZs2AAAOHjwIB4/foyePXvCzMwMhw4dgkQiQdu2bXHx4kUcP34cPj4+cHR0xOXLl/Hy5Us4OzvXyD4AVExrnLSYPn/OR/7VkZtNEEKIUj/88AMmTJgAHx8fNGvWDP/9738rfSWgqtq+fTu2b98uN23RokWYP38+du/ejQULFmDRokWwtrbGwoULMX78eACAqakp9u3bh5CQEOTn58PJyQk7duyAq6sr7t27h+joaKxevRpZWVmwt7fHypUrlV4LXh1ErLwRQI1UZmYmTExMkJGRUeXLCR46dAgDBgyQHTtgDDAz4+eZ3roFtG9fU1HXbYpyQzjKTfnqSn7y8/MRHx8PR0fHOnM5QYlEgszMTBgbG9eZqzLVFVXJTXmfbWXrAWW/holE1NVLCCENHRXTWkAjegkhpGGjYloLaEQvIYQ0bFRMawF18xJCSMNGxbQWUDcvIQ0HjdlseNTxmVIxrQXSbt6EBKCCC4gQQuoo6Uji3NxcgSMh6ib9TFUZLU7nmdYCa2t+d4e8PODJE6BNG6EjIoRUlaamJkxNTWXXmtXX16/wxts1TSKRoLCwEPn5+XRqzDsqkxvGGHJzc5GamgpTU1PZlZWqg4ppLRCJAHd34MIFYN06YM0aoSMihFSHlZUVAFT74u3qxhhDXl4e9PT0BC/sdU1VcmNqair7bKuLimktWbQI8PcH1q8HAgMBT0+hIyKEVJVIJIK1tTUsLCxQVFQkdDgoKipCdHQ0evbsSRf8eEdlc6Otra1Si1SKimkt8fMDRo8GduwAJk/mrVQ1fH6EEAFoamqq5Q+wOuIoLi6Grq4uFdN31HZuqJO9Fv3wA2BsDFy5AmzcKHQ0hBBC1IWKaS2ysgKWLOHPv/kGSE4WNh5CCCHqQcW0lk2eDHTqxC98P3UqUEN3NSKEEFKLqJjWMk1N4KefAC0tIDwcmD9f6IgIIYSoioqpADw9gV9+4c+XLi19TgghpH6iYiqQwEBgwQL+fPJk4NgxYeMhhBBSfVRMBRQSAnz8MVBSAowYAdy+LXREhBBCqoOKqYBEIt7F27MnkJUFDB4MpKUJHRUhhJCqomIqMLEY2LcPaNkSiI/nLVS6GD4hhNQvVEzrgKZNgQMHACMj4PRp4IsvALrLEyGE1B91vpg6ODhAJBKVeUybNk3h8lu2bCmzrK6ubi1HXXWursD27bzrd+NGuhg+IYTUJ3W+mF6+fBlJSUmyR2RkJABg5MiRStcxNjaWWychIaG2wlXJBx8Ay5bx5zNnArNn88FJhBBC6rY6f6F7c3NzudfLli1Dq1at0KtXL6XriEQilW+nI5TZs4HMTGDxYuD774Fbt/jF8c3MhI6MEEKIMnW+mL6tsLAQ27Ztw6xZs8q9P112djbs7e0hkUjg4eGBJUuWwNXVVenyBQUFKCgokL3OzMwEwG/hU5XbLEmXVfXWTMHBgLOzCBMnauLoURG8vBiOHStGixYqbVZQ6spNQ0S5KR/lRznKjXLqyk1l1xcxVn+GuuzevRtjxoxBYmIibGxsFC4TExODBw8ewM3NDRkZGfj+++8RHR2NO3fuoIWSahQSEoLQ0NAy07dv3w59fX217kNVPH5sjKVLu+DlS3306fMEU6feECwWQghpjHJzczFmzBhkZGTA2NhY6XL1qpj27dsXOjo6+Ouvvyq9TlFREZydnTF69GgsWrRI4TKKWqa2trZIS0srN3mK3isyMhL+/v5qu3/e6dMi+PtrwciIITGxGAYGatlsrauJ3DQUlJvyUX6Uo9wop67cZGZmolmzZhUW03rTzZuQkIDjx49j3759VVpPW1sbHTt2xMOHD5UuIxaLIRaLFa5bnQ+huusp4usLtGoFPHokwv792ggMVMtmBaPO3DQ0lJvyUX6Uo9wop2puKrtunR/NK7V582ZYWFhg4MCBVVqvpKQEt27dgrW1dQ1FVrNEIuDTT/lzuiA+IYTUTfWimEokEmzevBmBgYHQ0pJvTI8bNw5z586VvV64cCGOHTuGx48f4+rVq/j444+RkJCAzz77rLbDVpvAQEBDAzh7FoiLEzoaQggh76oXxfT48eNITEzEhAkTysxLTExEUlKS7PWbN28wceJEODs7Y8CAAcjMzMT58+fh4uJSmyGrlY0NMGAAf/7rr8LGQgghpKx6ccy0T58+UDZO6tSpU3KvV61ahVWrVtVCVLXrs8+AgweBrVv5Oah0eIQQQuqOetEyJbxlamkJpKYCf/8tdDSEEELeRsW0ntDWBsaP589pIBIhhNQtVEzrEekh48OH+WUGCSGE1A1UTOuRNm34/U4lEuDLL+k2bYQQUldQMa1nli0DdHSAyEjgyBGhoyGEEAJQMa13WrXiNw8HeOu0uFjYeAghhFAxrZfmzQOaNQPu3QN+/lnoaAghhFAxrYdMTQHpTW4WLADS04WMhhBCCBXTemrSJMDZGUhL4xd0KCwUOiJCCGm8qlVMnz59imfPnsleX7p0CTNnzsSmTZvUFhgpn5YWsH49P/90715g+HAgL0/oqAghpHGqVjEdM2YMTp48CQBITk6Gv78/Ll26hHnz5mHhwoVqDZAo9/77wIEDgK4uvyrSwIFAdrbQURFCSONTrWJ6+/ZteHl5AQB2796N9u3b4/z58/jf//6HLVu2qDM+UoF+/YCjRwEjI+DkScDfnwoqIYTUtmoV06KiItnNtI8fP47BgwcDANq1ayd3BxdSO3r2BKKiADMz4MIF4KOP6JQZQgipTdUqpq6urvjpp59w5swZREZGol+/fgCAFy9eoGnTpmoNkFRO5878MoN6evzfKVPoCkmEEFJbqlVMv/vuO2zcuBG9e/fG6NGj4e7uDgA4cOCArPuX1L4uXYCdO/mNxH/5hd+qjRBCSM2r1v1Me/fujbS0NGRmZsLMzEw2fdKkSdDX11dbcKTqBg8G1q4Fpk0DgoIAR0dg7FihoyKEkIatWi3TvLw8FBQUyAppQkICVq9ejbi4OFhYWKg1QFJ1U6cCX3/Nn8+cCWRkCBoOIYQ0eNUqpkOGDMHvv/8OAEhPT0eXLl2wcuVKDB06FGFhYWoNkFTP4sVA27b8og7LlwsdDSGENGzVKqZXr15Fjx49AAB79uyBpaUlEhIS8Pvvv2PNmjVqDZBUj5YWv8MMAKxaBTx/Lmw8hBDSkFWrmObm5sLIyAgAcOzYMQwfPhwaGhro2rUrEhIS1Bogqb4hQ4Bu3fiVkYKDhY6GEEIarmoV09atWyMiIgJPnz7F0aNH0adPHwBAamoqjI2N1RogqT6RqLSLd/Nm4M4dYeMhhJCGqlrFdMGCBfjqq6/g4OAALy8veHt7A+Ct1I4dO6o1QKIaHx9+3V6JBJgzR+hoCCGkYapWMR0xYgQSExNx5coVHD16VDbd19cXq1atUltwRD2WLAE0NYGDB/klBwkhhKhXtW/BZmVlhY4dO+LFixeyO8h4eXmhXbt2aguOqEfbtsDnn/Pns2YBJSXCxkMIIQ1NtYqpRCLBwoULYWJiAnt7e9jb28PU1BSLFi2CRCJRd4xEDUJDARMT4Pp1gO5FQAgh6lWtYjpv3jysW7cOy5Ytw7Vr13Dt2jUsWbIEa9euRVBQkLpjJGrQrBm/IhIAzJsHZGUJGw8hhDQk1SqmW7duxS+//IIpU6bAzc0Nbm5umDp1Kn7++We13oItJCQEIpFI7lFRN/Kff/6Jdu3aQVdXFx06dMChQ4fUFk9995//AK1bAykppeegEkIIUV21iunr168VFrV27drh9evXKgf1NldXVyQlJckeZ8+eVbrs+fPnMXr0aHz66ae4du0ahg4diqFDh+L27dtqjam+0tEBVqzgz1euBOiUYEIIUY9qFVN3d3esW7euzPR169bBzc1N5aDepqWlBSsrK9mjWbNmSpf98ccf0a9fP8yePRvOzs5YtGgRPDw8FMbaWA0ZAvTuDRQUAHPnCh0NIYQ0DNW6a8zy5csxcOBAHD9+XHaOaUxMDJ4+far2btUHDx7AxsYGurq68Pb2xtKlS2FnZ6dw2ZiYGMyaNUtuWt++fREREVHuexQUFKCgoED2OjMzEwC/CXpRUVGlY5UuW5V1hLB8OdClixZ27BBh5swi1MapwfUlN0Kg3JSP8qMc5UY5deWmsuuLGKveLaRfvHiB9evX4/79+wAAZ2dnTJo0Cd9++y02bdpUnU2WcfjwYWRnZ6Nt27ZISkpCaGgonj9/jtu3b8suZ/g2HR0dbN26FaNHj5ZN27BhA0JDQ5GSkqL0fUJCQhAaGlpm+vbt2xvsLeVWrfLA6dO2cHdPRWhojNDhEEJInZSbm4sxY8YgIyOj3Cv8VbuYKnLjxg14eHigpIZOZExPT4e9vT1++OEHfPrpp2XmV7eYKmqZ2traIi0trUqXRywqKkJkZCT8/f2hra1d6fWEEB8PtG+vhaIiEQ4fLoavr9q+BgrVp9zUNspN+Sg/ylFulFNXbjIzM9GsWbMKi2m1unmFYmpqijZt2uDhw4cK51tZWZUpmikpKbCysip3u2KxGGKxuMx0bW3tan0I1V2vNrVpA0yZAqxZA8yfr4U+fQCNal/Co/LqQ26EQrkpH+VHOcqNcqrmprLr1sKfT/XJzs7Go0ePYG1trXC+t7c3oqKi5KZFRkbKjusSefPnA0ZGQGwssGeP0NEQQkj9VaeL6VdffYXTp0/jyZMnOH/+PIYNGwZNTU1ZN+64ceMw960hqTNmzMCRI0ewcuVK3L9/HyEhIbhy5QqmT58u1C7UaebmwFdf8efz5gE0hoEQQqqnSt28w4cPL3d+enq6KrGU8ezZM4wePRqvXr2Cubk5unfvjgsXLsDc3BwAkJiYCI23+iZ9fHywfft2zJ8/H9988w2cnJwQERGB9u3bqzWuhmTWLGD9euDhQ2DbNuCTT4SOiBBC6p8qFVMTE5MK548bN06lgN62c+fOcuefOnWqzLSRI0di5MiRaouhoTM05AV1zhwgLIyKKSGEVEeViunmzZtrKg4ioAkTgAULgMuX+fFTT0+hIyKEkPqlTh8zJbXD3BwYMYI/DwsTNhZCCKmPqJgSAPw0GQDYsQNQ86FvQghp8KiYEgBAt26AqyuQmwv88YfQ0RBCSP1CxZQAAESi0tZpWBigvutiEUJIw0fFlMj8+9+AgQFw7x4QHS10NIQQUn9QMSUyxsbAmDH8OQ1EIoSQyqNiSuRIu3r37OEXciCEEFIxKqZETseOQP/+QEkJsHCh0NEQQkj9QMWUlLFoEf932zbg7l1hYyGEkPqAiikpw9MTGDaMj+gNDhY6GkIIqfuomBKFFi7kp8vs2QNcuyZ0NIQQUrdRMSUKtW8P/P+d7rBggbCxEEJIXUfFlCgVHAxoagIHDwIXLggdDSGE1F1UTIlSbdoA0jvq0cheQghRjoopKde8ebx1evgwcOWK0NEQQkjdRMWUlKtVq9KrIi1eLGwshBBSV1ExJRWaO5eP7I2IAG7eFDoaQgipe6iYkgo5O5fePHzJEmFjIYSQuoiKKamU+fP5v7t3A3FxwsZCCCF1DRVTUilubsDgwfyqSNQ6JYQQeVRMSaVJW6fbtgEXLwobCyGE1CVUTEmlde4MjB0LSCT8RuI5OUJHRAghdQMVU1Ila9cCLVoADx4As2cLHQ0hhNQNVExJlZiZAVu28OdhYfxiDoQQ0thRMSVV5usLzJjBn0+YALx6JWw8hBAitDpdTJcuXYrOnTvDyMgIFhYWGDp0KOIqOC9jy5YtEIlEcg9dXd1airjxWLqUn3+anEzdvYQQUqeL6enTpzFt2jRcuHABkZGRKCoqQp8+fZBTwcgXY2NjJCUlyR4JCQm1FHHjoacH/PYbf751K3D3rrDxEEKIkLSEDqA8R44ckXu9ZcsWWFhYIDY2Fj179lS6nkgkgpWVVU2H1+h17QoMGwaEh/PTZvbtEzoiQggRRp0upu/KyMgAADRp0qTc5bKzs2Fvbw+JRAIPDw8sWbIErq6uSpcvKChAQUGB7HVmZiYAoKioCEVFRZWOT7psVdap74KDgf37tRAeLsL588Xo3JkpXK4x5qayKDflo/woR7lRTl25qez6IsaY4r9+dYxEIsHgwYORnp6Os2fPKl0uJiYGDx48gJubGzIyMvD9998jOjoad+7cQYsWLRSuExISgtDQ0DLTt2/fDn19fbXtQ0O1Zk1HnDhhBze3l1i48LzQ4RBCiNrk5uZizJgxyMjIgLGxsdLl6k0xnTJlCg4fPoyzZ88qLYqKFBUVwdnZGaNHj8aiRYsULqOoZWpra4u0tLRyk6fovSIjI+Hv7w9tbe1Kr1ffJSQArq5aKCwU4fDhYvj6lv1KNdbcVAblpnyUH+UoN8qpKzeZmZlo1qxZhcW0XnTzTp8+HQcPHkR0dHSVCikAaGtro2PHjnj48KHSZcRiMcRiscJ1q/MhVHe9+qp1a2DyZGDNGiAoSAt9+gAaSoa2NbbcVAXlpnyUH+UoN8qpmpvKrlunR/MyxjB9+nSEh4fjxIkTcHR0rPI2SkpKcOvWLVhbW9dAhERq3jzA0BC4cgWYMoVfEJ8QQhqLOl1Mp02bhm3btmH79u0wMjJCcnIykpOTkZeXJ1tm3LhxmDt3ruz1woULcezYMTx+/BhXr17Fxx9/jISEBHz22WdC7EKjYWEB/Porb5Fu2gTMnEkFlRDSeNTpbt6wsDAAQO/eveWmb968GePHjwcAJCYmQuOtPsU3b95g4sSJSE5OhpmZGTw9PXH+/Hm4uLjUVtiN1kcfAXl5wPjxvMtXT49f3EEkEjoyQgipWXW6mFZmbNSpU6fkXq9atQqrVq2qoYhIRQIDeUGdMgX47jsgP5//q+wYKiGENAT0J46o3eTJgPT3zI8/8lu33bwpbEyEEFKTqJiSGjFzJrB/P2BuDty6Bfj4aCE8vDUkEqEjI4QQ9aNiSmrM4MHA7dv838JCEbZudUVAgCaysoSOjBBC1IuKKalRFhZARAQQFlYMLa0S7N+vAR8f4PHj0mXy8oCkJMFCJIQQlVExJTVOJAI+/ZRh8eJzsLJiuH2bH0cdPRpwceHnp9rY8FNrCCGkPqJiSmpN27ZvEBNTjE6dgNevgZ07gXv3IDuOOnUqcPGisDESQkh1UDEltap5cyA6mo/2XbIEOHQIePaM38qtsBD48EMgJUXoKAkhpGrq9HmmpGHS0+Ojfd+2ZQu/wXhcHBAQAERGAuVdEjM5GTh+HLhwAbC2BtzcgA4dAHt7ukgEIaT2UTEldYKxMb/JuJcXcPo00KsX0KwZUFQElJQAWlq8uOroAP/8o/y8VUdH4MABoH17+en//ANcvsyv0kTXAyeEqBsVU1JnODsDv/8ODB8OxMSUv6xIBHh4AD16AC9f8nNZ790D4uOB998HTpzgLVWAF9cxY4CcHGDjRuDPPwFLS9XjZQx48YKfS6ujo/r2CCH1FxVTUqcMG8a7bq9e5S1ILS3+KC7mx1SLinjx+te/eMv1ba9fA336ALGxvKBGRfGu4NmzSy+6f+YM4OkJ7NvHW8HvunGD3wHn2TN+fFf6sLDgD3Nz4Plz3g197Bh/rqvLt9WtG9C9O//XxKT8/czN5evVp8ssFhXx3Dx9CqxdWzb/hDRmVExJndOlC39UVZMmvMj17cu7dL28eAEGgM8/B6ZPB0aOBO7fB3r25EW2b19+mk5eHrBgAbB+feno4hs3Kve++fl8UFV0NH8tEgHvvcffo1UrwMwMMDUtXe70ad6SbtECWLyYdz1XV3o6L9yKjhNLf0AomvfiBS/mTZqU3Zfff+fPAwMB6W1+MzKAESP4jxMAuHYNOHqUH6Ouqvv3gSFD+A+Knj2B3r35o3XrhnW8+/59/gPs3RyThomKKWlQzMx4i7FfP36ajYYG8MMPwBdf8D/UFy8C//437/r99lv+0NPjheXNG76NkSP5MikpvOX54gXvSk5N5dMMDQE/P94K7tYNSEwEzp3jj7NngQcPeLG5dq38WJ8+BcaNA1at0sLAgRawsBAhLw/IzuZd0vn5/CGR8Ja4s3Ppuk+eAN98A+zYwVvaq1fzVjHAC9/Spbz1aG4OfPIJfzRvDhw8yKdHRfGW/4gR/JSkTp2AX37h6714wbezaBEQFAT4+vLid+cOYGDAfxjExfF9P3Kk7PHp8ty4Afj783wCwPbt/AEALVvyq2UNGsS3LS3kUrm5vMeguJjnQlnX+tOn/Pj74cM8Xm9v/vDw4J+zFGM8z5mZ/EeXnV3FPQUpKfwHTNu2ypd58ACYM4f3flhY8Mtqdu1aOv/VK2DhQr6dQYP4d9XQsOx2GOPbunqV/+Br1ar82N6WkwMkJPDBeWZmlV+vKgoK+GGTNm34j9K3fwj98w8frQ/wAYV+ftUbq5CQwEf8W1ry77eFhXpirwkiVplbszQymZmZMDExQUZGBoyNjSu9XlFREQ4dOoQBAwbQXe/fUdu5ycjgp9/06sW7fN8mkQB//AH8/Tdw6lTpH/a2bYF16/h/fFW8eMG7k8+d46OO09N5oWaM/1Ht3Zu3mrdv539wKnt5xY4dgY8/5leLWrOmtNUt9dFHvGgsXgykpcnPE4l4YU1NVbxtPT3eOgcAW1ueo+fP5ZexseHF2Nyc//G8e5cX1lmzeCF0cOBdv9nZfJ+ysvg67dvzwnjxIi8c6el8X779lnfpnz7N/313f0xM+PZMTCSIjy/EmzellVBHB3B35wVSX58X2rw83hq8dEl5DkUiQFOTPwoL5e+5a27Ofzj4+wM+Pry46uvzZaKjgQ0beIEsLgb+8x9g2TI+Xyo1led+wwa+jJRYDGzdWjpKPTBQ/opfurr8fW1tASMjXlgTEngvQGJiadyDB/Nc9+hRWrik/6/+9a8B+OUXbezZAzx6VHp6mbY2L9j//jcwYID8D5DHj3nvwrFjvGC7u/Nl+vevuMchK4sfkomK4q979waWL+fjFJYu5bl5+/Ns1oz/SB0+nP+flP4JyMkp/X9oZsa/R46OfL+3buXT39a2Lf/u6OiUfo45Ofz/l/TH8NCh/Eequbl6/uZUuh4wUkZGRgYDwDIyMqq0XmFhIYuIiGCFhYU1FFn9VVdzI5EwducOY5GRjBUU1P77p6YyNmVKMTMzy2O2thLm4sJYly6Mvf8+YwMGMDZ8OGN9+jCmpcUY/7Ne+vD1ZSwqirHPP2dMQ0N+Xtu2jIWHM7ZtG2P/+lfp9CZNGPvvfxmLj2fsyhXGPv2UMT09Pq9FC8bCwhjLz2csL4+xH39kzNKSz2vfnrHExNK4X71izMenbEyKHtrajHXsyJihIX/t7c3YmzfyecjMZGzvXsbGj2fM3Fz5tkxM+KO89xOJGOvenbHvv2ds2TLGBg8uf5saGjxGRfOaNmXM1lbxPCcnxs6dY+z0acZGjZLfxoABjF28yNigQaXT+vUrfd6uHWOzZjHWsmX5+6Kjw5ibm/w0NzfGgoIYi4lhLCenkM2YEcvs7CRl1pXmW/owMOD7Y2rKn5f3vu3a8e/V//7H2NOn8p9VcjJjHh6l2xSLS9ezsCh93r8/Y//5j/w06Wc4ejRjI0aUfvcq+ixdXSv3XXv7M+3fv4R9/fVFlp2t2t+cytYDapkqQC1T9aPcKFeZ3KSl8VHIO3bwVsmcObyVJ22h3LzJjwHfuQPMnQtMmiTfrfb4MfDwIW/V6OnJb/vNGz4S2tOzbNdqTg5vOfbsWbYrMjeXd/PdusVHUT95wgeBGRnxU5309fn7SlsMAO+u3r9fcbemlETC13n5ku/3y5fFePToHP79bx9YWGjL9ic2Frh+nS+vp8cf5ua8ZWVlJb9Nxnj3anExf5SU8H01NubrFRXx1vHx47z1eOeOfI+BgQHvFZgyhbf6Jkwo23IH+LH+b78t7d0oKeGfy9u3WJ46FVixorTVe+sWcPIkb7FnZfGWvbExb6326MGXu3eP385w61be9S+lo8NQWMi/BM2b867/rl15687MjH8v/vgD2LaN95K8TUuLt8D79uU9JZcv8y7VmBge99uaN+eHAjw8+DH1R494rg8f5v8GBfH3YYz3RqxZw1uhIhHP94kTwO7dwF9/le0dkXbvFxTw79Hjx/yzCQjgLWo7O77c69e8t+fBAx6f9KGvz/fVzIx/Z7Zu5Ydb+D5KkJhYAmtrapkKglqm6ke5Ua4h50Yi4a3gvXsZ27iRt3irSqj8pKczdvMmY8eP8+dve/OGsXHjeCtIX5+xiRMZi41Vvq2ff2asZ0/G/vpLtZjS0hj77TfGRo4sbaEbGBSwJUuKWW6u8vWKingPzJ07jN2/z9iDB4xlZSle9vVrxiIieMvZ07NsrwfAmKMjY//8I7/ejRuM/fQT72VQpriYsfPnGfvmG8bmzeO9IxJJldNQobg4xr7+upgNGPBI5e8NtUxVQC1T9aPcKEe5KV9dzs/9+3yQT0WnQtWE4mLgxo0ixMUdw8iRfWosN9nZfDBdbCxw5Qpvxf/4Y9nWf12jru9NZesBjeYlhJBqatdOuPfW0uKX0Xz2rLjihVVgaMi7m3v0qNG3qffq0SnjhBBCSN1ExZQQQghRERVTQgghREVUTAkhhBAV0QAkBaQDnDMzM6u0XlFREXJzc5GZmVnnRh0KjXKjHOWmfJQf5Sg3yqkrN9I6UNGJL1RMFcj6/7O1bW1tBY6EEEJIXZCVlQWTcs6BovNMFZBIJHjx4gWMjIwgqsJtLDIzM2Fra4unT59W6fzUxoByoxzlpnyUH+UoN8qpKzeMMWRlZcHGxgYa5dwJgVqmCmhoaKBFixbVXt/Y2Ji+2EpQbpSj3JSP8qMc5UY5deSmvBapFA1AIoQQQlRExZQQQghRERVTNRKLxQgODob43VtvEMpNOSg35aP8KEe5Ua62c0MDkAghhBAVUcuUEEIIUREVU0IIIURFVEwJIYQQFVExJYQQQlRExVSN1q9fDwcHB+jq6qJLly64dOmS0CHVuOjoaAwaNAg2NjYQiUSIiIiQm88Yw4IFC2BtbQ09PT34+fnhwYMHcsu8fv0aY8eOhbGxMUxNTfHpp58iOzu7FvdC/ZYuXYrOnTvDyMgIFhYWGDp0KOLi4uSWyc/Px7Rp09C0aVMYGhriww8/REpKitwyiYmJGDhwIPT19WFhYYHZs2ejuLhmbwZdG8LCwuDm5iY7od7b2xuHDx+WzW/MuXnbsmXLIBKJMHPmTNm0xpybkJAQiEQiuUe7t+7QLmhuGFGLnTt3Mh0dHfbbb7+xO3fusIkTJzJTU1OWkpIidGg16tChQ2zevHls3759DAALDw+Xm79s2TJmYmLCIiIi2I0bN9jgwYOZo6Mjy8vLky3Tr18/5u7uzi5cuMDOnDnDWrduzUaPHl3Le6Jeffv2ZZs3b2a3b99m169fZwMGDGB2dnYsOztbtszkyZOZra0ti4qKYleuXGFdu3ZlPj4+svnFxcWsffv2zM/Pj127do0dOnSINWvWjM2dO1eIXVKrAwcOsL///pv9888/LC4ujn3zzTdMW1ub3b59mzHWuHMjdenSJebg4MDc3NzYjBkzZNMbc26Cg4OZq6srS0pKkj1evnwpmy9kbqiYqomXlxebNm2a7HVJSQmzsbFhS5cuFTCq2vVuMZVIJMzKyoqtWLFCNi09PZ2JxWK2Y8cOxhhjd+/eZQDY5cuXZcscPnyYiUQi9vz581qLvaalpqYyAOz06dOMMZ4HbW1t9ueff8qWuXfvHgPAYmJiGGP8h4qGhgZLTk6WLRMWFsaMjY1ZQUFB7e5ALTAzM2O//PIL5YYxlpWVxZycnFhkZCTr1auXrJg29twEBwczd3d3hfOEzg1186pBYWEhYmNj4efnJ5umoaEBPz8/xMTECBiZsOLj45GcnCyXFxMTE3Tp0kWWl5iYGJiamqJTp06yZfz8/KChoYGLFy/Wesw1JSMjAwDQpEkTAEBsbCyKiorkctOuXTvY2dnJ5aZDhw6wtLSULdO3b19kZmbizp07tRh9zSopKcHOnTuRk5MDb29vyg2AadOmYeDAgXI5AOh7AwAPHjyAjY0NWrZsibFjxyIxMRGA8LmhC92rQVpaGkpKSuQ+IACwtLTE/fv3BYpKeMnJyQCgMC/SecnJybCwsJCbr6WlhSZNmsiWqe8kEglmzpyJbt26oX379gD4fuvo6MDU1FRu2Xdzoyh30nn13a1bt+Dt7Y38/HwYGhoiPDwcLi4uuH79eqPOzc6dO3H16lVcvny5zLzG/r3p0qULtmzZgrZt2yIpKQmhoaHo0aMHbt++LXhuqJgSUsOmTZuG27dv4+zZs0KHUqe0bdsW169fR0ZGBvbs2YPAwECcPn1a6LAE9fTpU8yYMQORkZHQ1dUVOpw6p3///rLnbm5u6NKlC+zt7bF7927o6ekJGBmN5lWLZs2aQVNTs8yosZSUFFhZWQkUlfCk+15eXqysrJCamio3v7i4GK9fv24QuZs+fToOHjyIkydPyt3Wz8rKCoWFhUhPT5db/t3cKMqddF59p6Ojg9atW8PT0xNLly6Fu7s7fvzxx0adm9jYWKSmpsLDwwNaWlrQ0tLC6dOnsWbNGmhpacHS0rLR5kYRU1NTtGnTBg8fPhT8e0PFVA10dHTg6emJqKgo2TSJRIKoqCh4e3sLGJmwHB0dYWVlJZeXzMxMXLx4UZYXb29vpKenIzY2VrbMiRMnIJFI0KVLl1qPWV0YY5g+fTrCw8Nx4sQJODo6ys339PSEtra2XG7i4uKQmJgol5tbt27J/diIjIyEsbExXFxcamdHapFEIkFBQUGjzo2vry9u3bqF69evyx6dOnXC2LFjZc8ba24Uyc7OxqNHj2BtbS3890al4UtEZufOnUwsFrMtW7awu3fvskmTJjFTU1O5UWMNUVZWFrt27Rq7du0aA8B++OEHdu3aNZaQkMAY46fGmJqasv3797ObN2+yIUOGKDw1pmPHjuzixYvs7NmzzMnJqd6fGjNlyhRmYmLCTp06JTeMPzc3V7bM5MmTmZ2dHTtx4gS7cuUK8/b2Zt7e3rL50mH8ffr0YdevX2dHjhxh5ubmDeIUhzlz5rDTp0+z+Ph4dvPmTTZnzhwmEonYsWPHGGONOzfvens0L2ONOzdffvklO3XqFIuPj2fnzp1jfn5+rFmzZiw1NZUxJmxuqJiq0dq1a5mdnR3T0dFhXl5e7MKFC0KHVONOnjzJAJR5BAYGMsb46TFBQUHM0tKSicVi5uvry+Li4uS28erVKzZ69GhmaGjIjI2N2SeffMKysrIE2Bv1UZQTAGzz5s2yZfLy8tjUqVOZmZkZ09fXZ8OGDWNJSUly23ny5Anr378/09PTY82aNWNffvklKyoqquW9Ub8JEyYwe3t7pqOjw8zNzZmvr6+skDLWuHPzrneLaWPOTUBAALO2tmY6OjqsefPmLCAggD18+FA2X8jc0C3YCCGEEBXRMVNCCCFERVRMCSGEEBVRMSWEEEJURMWUEEIIUREVU0IIIURFVEwJIYQQFVExJYQQQlRExZQQQghRERVTQgghREVUTAlpBF6+fIkpU6bAzs4OYrEYVlZW6Nu3L86dOwcAEIlEiIiIEDZIQuoxup8pIY3Ahx9+iMLCQmzduhUtW7ZESkoKoqKi8OrVK6FDI6RBoGvzEtLApaenw8zMDKdOnUKvXr3KzHdwcEBCQoLstb29PZ48eQIA2L9/P0JDQ3H37l3Y2NggMDAQ8+bNg5YW/x0uEomwYcMGHDhwAKdOnYK1tTWWL1+OESNG1Mq+EVJXUDcvIQ2coaEhDA0NERERgYKCgjLzL1++DADYvHkzkpKSZK/PnDmDcePGYcaMGbh79y42btyILVu2YPHixXLrBwUF4cMPP8SNGzcwduxYjBo1Cvfu3av5HSOkDqGWKSGNwN69ezFx4kTk5eXBw8MDvXr1wqhRo+Dm5gaAtzDDw8MxdOhQ2Tp+fn7w9fXF3LlzZdO2bduGr7/+Gi9evJCtN3nyZISFhcmW6dq1Kzw8PLBhw4ba2TlC6gBqmRLSCHz44Yd48eIFDhw4gH79+uHUqVPw8PDAli1blK5z48YNLFy4UNayNTQ0xMSJE5GUlITc3FzZct7e3nLreXt7U8uUNDo0AImQRkJXVxf+/v7w9/dHUFAQPvvsMwQHB2P8+PEKl8/OzkZoaCiGDx+ucFuEkFLUMiWkkXJxcUFOTg4AQFtbGyUlJXLzPTw8EBcXh9atW5d5aGiU/um4cOGC3HoXLlyAs7Nzze8AIXUItUwJaeBevXqFkSNHYsKECXBzc4ORkRGuXLmC5cuXY8iQIQD4iN6oqCh069YNYrEYZmZmWLBgAT744APY2dlhxIgR0NDQwI0bN3D79m18++23su3/+eef6NSpE7p3747//e9/uHTpEn799VehdpcQYTBCSIOWn5/P5syZwzw8PJiJiQnT19dnbdu2ZfPnz2e5ubmMMcYOHDjAWrduzbS0tJi9vb1s3SNHjjAfHx+mp6fHjI2NmZeXF9u0aZNsPgC2fv165u/vz8RiMXNwcGC7du2q7V0kRHA0mpcQUm2KRgET0hjRMVNCCCFERVRMCSGEEBXRACRCSLXRUSJCOGqZEkIIISqiYkoIIYSoiIopIYQQoiIqpoQQQoiKqJgSQgghKqJiSgghhKiIiikhhBCiIiqmhBBCiIr+D5lL6aoQsvGnAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAb0AAADvCAYAAABmHwoMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3VElEQVR4nO3deVxU9foH8M8AM+ybIgKKgJmCgrgb7gWIqbkkpWblUma5pL+Wm+Z1q8ylm1fTm+l1ocUFUzHzaor7LrhgKuZSLuQCkrKJwDDz/f1xmpERGBZxDsN83q/Xec2Zc77nnOc8Us98z6oQQggQERFZACu5AyAiIjIVFj0iIrIYLHpERGQxWPSIiMhisOgREZHFYNEjIiKLwaJHREQWg0WPiIgsBoseERFZDBY9onJQKBSYPn263GEQ0WNi0SOzERMTA4VCUepw9OhRWeO7evUqFAoF/vWvf8kaR3Vw5swZREdHw8/PD3Z2dqhXrx4iIyOxcOFCg3aff/45Nm3aJE+QZJFs5A6AqKI++eQTBAQEFJveqFEjGaKhRx0+fBjPPvssGjRogJEjR8LLywspKSk4evQoFixYgHHjxunbfv7554iOjka/fv3kC5gsCosemZ3nn38ebdq0kTsMKsXMmTPh6uqKxMREuLm5GcxLS0uTJyiiv/HwJtUoarUatWrVwvDhw4vNy8rKgp2dHT744AMAQEFBAaZOnYrWrVvD1dUVjo6O6Ny5M/bs2fNEY0xLS8Mbb7yBunXrws7ODqGhofj222+LtVu7di1at24NZ2dnuLi4ICQkBAsWLNDPV6vVmDFjBp5++mnY2dmhdu3a6NSpE+Lj40vd9vHjx6FQKErc3vbt26FQKLBlyxYAQHZ2NiZMmAB/f3/Y2trC09MTkZGROHnypNH9+/3339GsWbNiBQ8APD099eMKhQL379/Ht99+qz9EPWzYMP38GzduYMSIEahbty5sbW3RrFkzrFixwmB9e/fuhUKhQGxsLD7++GN4eXnB0dERffr0QUpKitE4yTKxp0dmJzMzE+np6QbTFAoFateuDaVSif79+2Pjxo1YsmQJVCqVvs2mTZuQn5+PQYMGAZCK4LJlyzB48GCMHDkS2dnZWL58OaKiopCQkIAWLVpUeewPHjxAt27dcPnyZYwdOxYBAQH48ccfMWzYMGRkZGD8+PEAgPj4eAwePBjh4eGYM2cOAOD8+fM4dOiQvs306dMxa9YsvPnmm2jXrh2ysrJw/PhxnDx5EpGRkSVuv02bNmjYsCHWrVuHoUOHGsyLjY2Fu7s7oqKiAABvv/021q9fj7Fjx6Jp06b466+/cPDgQZw/fx6tWrUqdR/9/Pxw5MgRnD17FsHBwaW2+/777/Wxv/XWWwCAp556CgCQmpqKZ555BgqFAmPHjkWdOnWwbds2vPHGG8jKysKECRMM1jVz5kwoFAp89NFHSEtLw/z58xEREYGkpCTY29uXGgNZIEFkJlauXCkAlDjY2trq223fvl0AED///LPB8j179hQNGzbUfy8sLBT5+fkGbe7duyfq1q0rRowYYTAdgJg2bZrR+K5cuSIAiC+++KLUNvPnzxcAxA8//KCfVlBQIMLCwoSTk5PIysoSQggxfvx44eLiIgoLC0tdV2hoqOjVq5fRmEoyadIkoVQqxd27d/XT8vPzhZubm8F+u7q6ijFjxlR4/Tt27BDW1tbC2tpahIWFiX/84x9i+/btoqCgoFhbR0dHMXTo0GLT33jjDeHt7S3S09MNpg8aNEi4urqK3NxcIYQQe/bsEQBEvXr19LkTQoh169YJAGLBggUVjp9qNh7eJLPzn//8B/Hx8QbDtm3b9POfe+45eHh4IDY2Vj/t3r17iI+Px8CBA/XTrK2t9T1BrVaLu3fvorCwEG3atCnzEF5lbd26FV5eXhg8eLB+mlKpxLvvvoucnBzs27cPAODm5ob79+8bPVTp5uaGc+fO4dKlSxWKYeDAgVCr1di4caN+2o4dO5CRkWGQHzc3Nxw7dgw3b96s0PojIyNx5MgR9OnTB6dPn8bcuXMRFRWFevXqYfPmzWUuL4TAhg0b8MILL0AIgfT0dP0QFRWFzMzMYv8+r7/+OpydnfXfo6Oj4e3tja1bt1YodrIAclddovLS9fQSExPLbDtq1Cjh7Ows8vLyhBBCLFu2TAAQSUlJBu1iYmJESEiIUCqVBj3HgIAAg3aoop5ekyZNROfOnYtNT0pKEgDEokWLhBBCpKamiqCgIH0vZvjw4WLbtm0Gy+zbt0+4ubkJACI4OFh88MEH4vTp00Zj1AkMDBSRkZH676+++qrw8PAQarVaPy02NlbY2dkJKysr0bZtWzFt2jTx+++/l2v9Ovn5+SIhIUFMmjRJ2NnZCaVSKc6dO6efX1JPLzU1tdQevW7YuHGjEOJhT2/FihXFtt25c2fRpEmTCsVLNR97elQjDRo0CNnZ2foe4Lp16xAYGIjQ0FB9mx9++AHDhg3DU089heXLl+OXX35BfHw8nnvuOWi1WrlCByBd8JGUlITNmzejT58+2LNnD55//nmD83BdunTB77//jhUrViA4OBjLli1Dq1atsGzZsjLXP3DgQOzZswfp6enIz8/H5s2bMWDAANjYPDzN//LLL+OPP/7AwoUL4ePjgy+++ALNmjUz6FWXRaVSoW3btvj888+xePFiqNVq/Pjjj0aX0eX+1VdfLdaj1w0dO3YsdwxEBuSuukTlVZGenkajEd7e3mLQoEHizp07wsbGplhPrW/fvqJhw4ZCq9UaTO/QoYPw8/MzmIYq6ul1795deHl5CY1GYzB97dq1JZ6HLLo/o0aNEgDEpUuXSmyTnZ0tWrZsKerVq2c0TiGESE5OFgDEN998I+Li4gQAsWfPHqPLpKaminr16omOHTuWuf6SnDlzRgAQo0aN0k9zcnIq1tMrLCwUzs7OYvDgwWWuU9fTmzRpksF0rVYrvL29RVRUVKVipZqLPT2qkaysrBAdHY2ff/4Z33//PQoLCw3OVwHSOT1AOoekc+zYMRw5cuSJxdWzZ0/cvn3b4HxjYWEhFi5cCCcnJ3Tt2hUA8NdffxksZ2VlhebNmwMA8vPzS2zj5OSERo0a6ecbExQUhJCQEMTGxiI2Nhbe3t7o0qWLfr5Go0FmZqbBMp6envDx8Slz/Xv27DHIqY7u/FqTJk300xwdHZGRkWHQztraGgMGDMCGDRtw9uzZYuu5c+dOsWnfffcdsrOz9d/Xr1+PW7du4fnnnzcaK1ke3rJAZmfbtm347bffik3v0KEDGjZsqP8+cOBALFy4ENOmTUNISAiCgoIM2vfu3RsbN25E//790atXL1y5cgXffPMNmjZtipycnErHt2vXLuTl5RWb3q9fP7z11ltYsmQJhg0bhhMnTsDf3x/r16/HoUOHMH/+fP3FGG+++Sbu3r2L5557DvXr18e1a9ewcOFCtGjRQr8fTZs2Rbdu3dC6dWvUqlULx48f199iUB4DBw7E1KlTYWdnhzfeeANWVg9/A2dnZ6N+/fqIjo5GaGgonJycsHPnTiQmJuLLL780ut5x48YhNzcX/fv3R2BgIAoKCnD48GHExsbC39/f4B7K1q1bY+fOnZg3bx58fHwQEBCA9u3bY/bs2dizZw/at2+PkSNHomnTprh79y5OnjyJnTt34u7duwbbrFWrFjp16oThw4cjNTUV8+fPR6NGjTBy5Mhy5YIsiNxdTaLyMnbLAgCxcuVKg/ZarVb4+voKAOKzzz4rtj6tVis+//xz4efnJ2xtbUXLli3Fli1bxNChQx/r8GZpw/fffy+EkA4TDh8+XHh4eAiVSiVCQkKKxb5+/XrRvXt34enpKVQqlWjQoIEYNWqUuHXrlr7NZ599Jtq1ayfc3NyEvb29CAwMFDNnzizx1oCSXLp0SR/bwYMHDebl5+eLDz/8UISGhgpnZ2fh6OgoQkNDxddff13merdt2yZGjBghAgMDhZOTk1CpVKJRo0Zi3LhxIjU11aDtb7/9Jrp06SLs7e0FAINDnampqWLMmDHC19dXKJVK4eXlJcLDw8XSpUv1bXSHN9esWSMmTZokPD09hb29vejVq5e4du1aufJAlkUhRAnHIYiIzMDevXvx7LPP4scff0R0dLTc4ZAZ4Dk9IiKyGCx6RERkMVj0iIjIYvCcHhERWQz29IiIyGKw6BERkcUw65vTtVotbt68CWdnZygUCrnDISIimQghkJ2dDR8fH4MHLTzKrIvezZs34evrK3cYRERUTaSkpKB+/fqlzjfroqd7ZFNKSgpcXFyMtlWr1dixYwe6d+8OpVJpivDMBnNjHPNjHPNjHPNjXFXlJysrC76+vgbvVSyJWRc93SFNFxeXchU9BwcHuLi48A/vEcyNccyPccyPccyPcVWdn7JOdfFCFiIishgsekREZDFY9DQaYMsWID5e7kiIiOgJM+tzelVi8WJg3DigZUsgIgLgrQ9ENZZGo4FarTbpNtVqNWxsbJCXlweNRmPSbZuD8ubH2toaNjY2j317Gove4MHAhx8Cp04Bhw8DHTvKHRERPQE5OTn4888/S3yr+5MkhICXlxdSUlJ4P3EJKpIfBwcHeHt7Q6VSVXp7LHq1awNDhgDLlwMLF7LoEdVAGo0Gf/75JxwcHFCnTh2TFh+tVoucnBw4OTkZvWnaUpUnP0IIFBQU4M6dO7hy5QqefvrpSueSRQ+QDm8uXw6sXw/cuAHUqyd3RERUhdRqNYQQqFOnDuzt7U26ba1Wi4KCAtjZ2bHolaC8+bG3t4dSqcS1a9f07StD1n8BjUaDKVOmICAgAPb29njqqafw6aefmvzwA0JDgS5dpItavvnGtNsmIpPh4UXzVhU/GmQtenPmzMHixYuxaNEinD9/HnPmzMHcuXOxcOFC0wczbpz0uWQJkJdn+u0TEdETJ2vRO3z4MPr27YtevXrB398f0dHR6N69OxISEkwfTL9+QP36wJ07QGys6bdPRERPnKzn9Dp06IClS5fi4sWLaNy4MU6fPo2DBw9i3rx5JbbPz89Hfn6+/ntWVhYA6Xh9WZch6+Yba2c1ahSsp0yB9quvoBk82GJuXyhPbiwZ82OcOeRHd05Pq9VCq9WadNu60zW67Vc3V69exVNPPYUTJ06gRYsWJt9+RfKj1WohhIBarYa1tbXBvPL+/cla9CZOnIisrCwEBgbC2toaGo0GM2fOxJAhQ0psP2vWLMyYMaPY9B07dsDBwaFc24w3chO6ys8P3ZVKWJ88iYP//jfuBQaWb0dqCGO5IeanLNU5PzY2NvDy8kJOTg4KCgpkiSE7O7vCy4wePRpr1qwpNj08PBzr16+virCQk5MDALh//76+I/Go3r17IyQkBLNmzaqSbZakPPkpKCjAgwcPsH//fhQWFhrMy83NLdd2ZC1669atw6pVq7B69Wo0a9YMSUlJmDBhAnx8fDB06NBi7SdNmoT33ntP/133VO3u3buX64HT8fHxiIyMNPpQU8Xu3UBMDDqdPAlNkW3VZOXNjaVifowzh/zk5eUhJSUFTk5Olb7qr7J073mrzHs/lUoloqKisGLFCoPptra2Zf4/r7ycnJwAAI6OjqWu08bGBiqVqsq2WVRF8pOXlwd7e3t06dKl2L9jaQX7UbIWvQ8//BATJ07EoEGDAAAhISG4du0aZs2aVWLRs7W1ha2tbbHpSqWy3P+xldl2/HggJgZWGzfC6s4dwMenfDtTA1Qkj5aI+TGuOudHo9FAoVDAyspKugJQCKCcPYPHpdVqgfv3obC2lrbt4FDuUycKhQJ2dnbwKeX/Q6+88go0Gg1ii1yHoFar4e3tjXnz5uH111/HL7/8gs8++wxnz56FtbU1wsLCsGDBAjz11FMAHl4Rqc+NkVhKm79hwwZMnToVly9fhre3N8aNG4f3339fP//rr7/Gv//9b6SkpMDV1RWdO3fW91TXrVuH6dOn48qVK3BwcEDLli3x008/wdHRsdh2rKysoFAoSvxbK+/fnqxFLzc3t1gSra2t5T3u3aIF0LkzcOCAdPvCJ5/IFwsRPRm5ucDfPZwnzQqAW9EJOTlACf9Dr4whQ4bgpZde0t/cDQDbt29Hbm4u+vfvD0A6bPnee++hefPmyMnJwdSpU9G/f38kJSVVyS0AJ06cwMsvv4zp06dj4MCBOHz4MEaPHo3atWtj2LBhOH78ON599118//336NChA+7evYsDBw4AAG7duoUhQ4ZgxowZGDRoEO7fv48DBw480dvWZC16L7zwAmbOnIkGDRqgWbNmOHXqFObNm4cRI0bIGZZ0+4Ku6E2eDJTQuyQiMoUtW7boC5rOxx9/jI8//hhRUVFwdHREXFwcXnvtNQDA6tWr0adPH/3LVAcMGGCw7IoVK1CnTh0kJycjODj4seObN28ewsPDMWXKFABA48aNkZycjC+++ALDhg3D9evX4ejoiN69e8PZ2Rl+fn5o2bIlAKnoFRYWonfv3vD394eVlRVCQkIeOyZjZC16CxcuxJQpUzB69GikpaXBx8cHo0aNwtSpU+UM6+HtC3/+Kd2+8Prr8sZDRFXLwUHqcZmAVqtFVlYWXFxcHh7erIBnn30WixcvNphWq1YtANK5tpdffhmrVq3Ca6+9hvv37+Onn37C2rVr9W0vXbqEqVOn4tixY0hPT9cfSbt+/XqVFL3z58+jb9++BtM6duyI+fPnQ6PRIDIyEn5+fmjYsCF69OiBHj16oH///nBwcEBoaCjCw8PRqVMndO/eHVFRUYiOjoa7u/tjx1UaWYues7Mz5s+fj/nz58sZRnFKJfDOO1Iv76uvgNdes5jbF4gsgkJRZYcYy6TVSk97cnQEKnE40dHREY0aNSp1/pAhQ9C1a1ekpaUhPj4e9vb26NGjh37+Cy+8AD8/P/z3v/+Fj48PtFotgoODTXYVq7OzM06ePIm9e/dix44dmDp1KqZPn47ExES4ublh+/btiI+Px+HDh7Fw4UJMnjwZx44dQ0BAwBOJhw+CK83IkdJhzRMngKNH5Y6GiKhEHTp0gK+vL2JjY7Fq1Sq89NJL+os6/vrrL1y4cAH//Oc/ER4ejqCgINy7d69Ktx8UFIRDhw4ZTDt06BAaN26sv5fOxsYGERERmDt3Ln799VdcvXoVu3fvBiBdIPPMM89g+vTpOHXqFFQqFeLi4qo0xqL4wOnS1KkjvXYoJkZ6+0JYmNwREZEFys/Px+3btw2m2djYwMPDQ//9lVdewTfffIOLFy9iz549+unu7u6oXbs2li5dCm9vb1y/fh0TJ06sVBx37txBUlKSwTRvb2+8//77aNu2LT799FMMHDgQR44cwaJFi/D1118DkM5J/vHHH+jSpQvc3d2xdetWaLVaNGnSBMeOHcPOnTvRoUMHBAQEIDExEXfu3EFQUFClYiwXYcYyMzMFAJGZmVlm24KCArFp0yZRUFBQ/g2cOCEEIIS1tRC//fYYkVZvlcqNBWF+jDOH/Dx48EAkJyeLBw8emHzbGo1G3Lt3T2g0mgovO3ToUAGg2NCkSRODdsnJyQKA8PPzE1qt1mBefHy8CAoKEra2tqJ58+Zi7969AoCIi4sTQghx5coVAUCcOnWq1Di6du1aYhyffvqpEEKI9evXi6ZNmwqlUikaNGggvvjiC/2yBw4cEF27dhXu7u7C3t5eNG/eXMTGxurj7t69u/Dw8BC2traicePGYuHChaXGYezfsbz1gD09Y1q1Anr3BrZsAT7+GNiwQe6IiMiCxMTEICYmpsx2QUFBpV7mHxERgeTkZINpRdv6+/uXeYvA3r17jc4fMGBAsatEdTp16lTq8kFBQdi2bZvhhT5PGM/plWXOHOnk88aN0pvViYjIbLHolaVpU+CNN6TxDz6QnuRARERmiUWvPKZPl+6tOXIEeIJXFRER0ZPFolcePj6A7jlyEycC1fgVKkREVDoWvfL68EPpNoZLl4D//lfuaIioEsq6YIOqt6r492PRKy9nZ+kwJyB9VuLdWEQkD91N0nK9S4+qhu6deY/zNg/eslARI0cCCxYAFy8Cc+cCn34qd0REVA42NjZwcHDAnTt3oFQqTXJpvI5Wq0VBQQHy8vJMul1zUZ78CCGQm5uLtLQ0uLm5FXtrekWw6FWEUgnMng28+CLw5ZfS8zkt6H17ROZKoVDA29sbV65cwbVr10y6bSEEHjx4AHt7+wq/RNYSVCQ/bm5u8PLyeqztsehVVL9+QIcO0j1706bx/B6RmVCpVHj66adNfohTrVZj//796NKlS7V9ya6cypsfpVL5WD08HRa9ilIogC++ADp2BFasACZMAJo1kzsqIioHKysr2NnZmXSb1tbWKCwshJ2dHYteCUydHx5growOHaRDnFot8NFHckdDRETlxKJXWbNmATY2wP/+B+zbJ3c0RERUDix6ldW4sXQ1JyD19nj/DxFRtcei9zimTpUeT3bsGLBpk9zREBFRGVj0HoeXF/Dee9L4pElAYaG88RARkVEseo/rww+B2rWBCxekt6wTEVG1xaL3uFxcgMmTpfHp04EHD2QNh4iISseiVxXeeQdo0AC4cQNYuFDuaIiIqBQselXBzg745BNpfNYs4N49eeMhIqISsehVlVdfBYKDgYwMYM4cuaMhIqISsOhVFWtrqZcHSG9iuHFD3niIiKgYFr2q1KsX0KkTkJf38N17RERUbbDoVSWF4uGhzRUrgN9+kzceIiIyIHvRu3HjBl599VXUrl0b9vb2CAkJwfHjx+UOq/I6dAD69JEeRq27lYGIiKoFWYvevXv30LFjRyiVSmzbtg3Jycn48ssv4e7uLmdYj+/zzwErK2DjRiAxUe5oiIjob7K+T2/OnDnw9fXFypUr9dMCAgJkjKiKNGsmXc353XfSu/fWrZM7IiIigsxFb/PmzYiKisJLL72Effv2oV69ehg9ejRG6t5e8Ij8/Hzk5+frv2dlZQGQ3ryrVquNbks3v6x2VWb8eCi/+w5iwwYUXroE+PubZruVYPLcmBnmxzjmxzjmx7iqyk95l1cIId87cXRvMH7vvffw0ksvITExEePHj8c333yDoUOHFms/ffp0zJgxo9j01atXw8HB4YnHW1Fh06bB8/RpXO7TB+dGjJA7HCKiGis3NxevvPIKMjMz4eLiUmo7WYueSqVCmzZtcPjwYf20d999F4mJiThy5Eix9iX19Hx9fZGenm50JwHpV0B8fDwiIyNN8kp6AFBs3w6bF16AcHZG4R9/AK6uJtluRcmRG3PC/BjH/BjH/BhXVfnJysqCh4dHmUVP1sOb3t7eaNq0qcG0oKAgbNiwocT2tra2sLW1LTZdqVSWO1kVafvYevUCmjaFIjkZyu++e/gaomrKpLkxQ8yPccyPccyPcY+bn/IuK+vVmx07dsSFCxcMpl28eBF+fn4yRVTFFArg//5PGl+wgO/bIyKSmaxF7//+7/9w9OhRfP7557h8+TJWr16NpUuXYsyYMXKGVbWGDAHq1AGuX5duYSAiItnIWvTatm2LuLg4rFmzBsHBwfj0008xf/58DBkyRM6wqpa9PTB6tDT+5ZeAfKdQiYgsnqzn9ACgd+/e6N27t9xhPFnvvAPMng0kJABHjkhPbSEiIpOT/TFkFqFuXelmdQCYN0/eWIiILBiLnqnoLmiJiwP++EPeWIiILBSLnqk0awZERUkPov7qK7mjISKySCx6pqS7T2/5cukN60REZFIseqYUGSn1+HJygGXL5I6GiMjisOiZkkLxsLf31VcAH0BLRGRSlSp6KSkp+PPPP/XfExISMGHCBCxdurTKAquxXnkF8PQEUlKAUh63RkRET0alit4rr7yCPXv2AABu376NyMhIJCQkYPLkyfjkk0+qNMAax84OGDVKGl+zRt5YiIgsTKWK3tmzZ9GuXTsAwLp16xAcHIzDhw9j1apViImJqcr4aqb+/aXPnTuBvDx5YyEisiCVKnpqtVr/toOdO3eiT58+AIDAwEDcunWr6qKrqVq0AHx8gNxcYP9+uaMhIrIYlSp6zZo1wzfffIMDBw4gPj4ePXr0AADcvHkTtWvXrtIAaySFAujZUxr/3//kjYWIyIJUqujNmTMHS5YsQbdu3TB48GCEhoYCADZv3qw/7EllKFr0+BBqIiKTqNQDp7t164b09HRkZWXB3d1dP/2tt96Cg4NDlQVXo0VEAEol8PvvwKVLQOPGckdERFTjVaqn9+DBA+Tn5+sL3rVr1zB//nxcuHABnp6eVRpgjeXsDHTtKo3zECcRkUlUquj17dsX3333HQAgIyMD7du3x5dffol+/fph8eLFVRpgjcbzekREJlWponfy5El07twZALB+/XrUrVsX165dw3fffYev+DDl8uvVS/rcvx/IzpY3FiIiC1CpopebmwtnZ2cAwI4dO/Diiy/CysoKzzzzDK5du1alAdZojRsDjRpJjyPbuVPuaIiIarxKFb1GjRph06ZNSElJwfbt29G9e3cAQFpaGlxcXKo0wBqPhziJiEymUkVv6tSp+OCDD+Dv74927dohLCwMgNTra9myZZUGWOPpDnFu3cpbF4iInrBK3bIQHR2NTp064datW/p79AAgPDwc/XWP2KLy6doVcHAAbt0CkpIA/mggInpiKv1qIS8vL7Rs2RI3b97Uv3GhXbt2CAwMrLLgLIKtrXTPHsBDnERET1ilip5Wq8Unn3wCV1dX+Pn5wc/PD25ubvj000+h1WqrOsaaT3eIk0WPiOiJqtThzcmTJ2P58uWYPXs2OnbsCAA4ePAgpk+fjry8PMycObNKg6zxdBezHDsGpKcDHh7yxkNEVENVquh9++23WLZsmf7tCgDQvHlz1KtXD6NHj2bRq6j69YHmzYFffwV++QV49VW5IyIiqpEqdXjz7t27JZ67CwwMxN27dx87KIvEQ5xERE9cpYpeaGgoFi1aVGz6okWL0Lx588cOyiLpit727UBhobyxEBHVUJU6vDl37lz06tULO3fu1N+jd+TIEaSkpGDr1q1VGqDFaN8ecHcH7t0Djh4FOnWSOyIiohqnUj29rl274uLFi+jfvz8yMjKQkZGBF198EefOncP3339fqUBmz54NhUKBCRMmVGp5s2djA/z9Ml4e4iQiejIq1dMDAB8fn2IXrJw+fRrLly/H0qVLK7SuxMRELFmyhIdGe/UC1qyRns4ya5bc0RAR1TiVvjm9quTk5GDIkCH473//a/BCWosUFQUoFNJVnCkpckdDRFTjVLqnV1XGjBmDXr16ISIiAp999pnRtvn5+cjPz9d/z8rKAgCo1Wqo1Wqjy+rml9VOVq6usG7fHlZHj0Lz88/Qjhxpks2aRW5kxPwYx/wYx/wYV1X5Ke/ysha9tWvX4uTJk0hMTCxX+1mzZmHGjBnFpu/YsQMODg7lWkd8fHyFYjS1xk89haCjR5EWE4OEevVMuu3qnhu5MT/GMT/GMT/GPW5+cnNzy9VOIUT5H+3/4osvGp2fkZGBffv2QaPRlLmulJQUtGnTBvHx8fpzed26dUOLFi0wf/78Epcpqafn6+uL9PT0Ml9ppFarER8fj8jISCiVyjLjk83p01C2bQthZ4fCW7cAR8cnvkmzyY1MmB/jmB/jmB/jqio/WVlZ8PDwQGZmptF6UKGenqura5nzX3/99XKt68SJE0hLS0OrVq300zQaDfbv349FixYhPz8f1tbWBsvY2trC1ta22LqUSmW5k1WRtrJo3RoICIDiyhUod+0CBgww2aarfW5kxvwYx/wYx/wY97j5Ke+yFSp6K1eurFQwJQkPD8eZM2cMpg0fPhyBgYH46KOPihU8i6FQAP37A/PmAXFxJi16REQ1nWzn9JydnREcHGwwzdHREbVr1y423eLoit6WLUBBAaBSyR0REVGNIPstC1SCsDDA0xPIzAT27ZM7GiKiGqNaFb29e/eWehGLRbG2Bvr2lcbj4uSNhYioBqlWRY+K6N9f+ty0CeCLeYmIqgSLXnX13HOAszNw6xaQkCB3NERENQKLXnVla/vwjeo8xElEVCVY9Koz3SHOuDig/M8QICKiUrDoVWfPPy/drnDpEpCcLHc0RERmj0WvOnNxASIipPFNm2QNhYioJmDRq+6KHuIkIqLHwqJX3fXpA1hZASdOANevyx0NEZFZY9Gr7jw9gY4dpXEe4iQieiwseuaAhziJiKoEi5456NdP+ty/H0hPlzUUIiJzxqJnDgICgNBQ6XFkP/8sdzRERGaLRc9cFH0WJxERVQqLnrnQFb0dO4D79+WNhYjITLHomYuQEKBhQyAvD/jlF7mjISIySyx65kKh4FWcRESPiUXPnOiK3s8/A7m58sZCRGSGWPTMSViYdIgzKwuIjZU7GiIis8OiZ06srIC33pLGlyyRNxYiIjPEomduhg8HlErg2DEgKUnuaIiIzAqLnrnx9Hx4bo+9PSKiCmHRM0ejRkmfq1YBOTnyxkJEZEZY9MzRs88CTz8NZGcDa9bIHQ0Rkdlg0TNHCsXD3h4PcRIRlRuLnrkaOhRQqaSXyx4/Lnc0RERmgUXPXHl4ANHR0jh7e0RE5cKiZ850hzjXrJFuWCciIqNkLXqzZs1C27Zt4ezsDE9PT/Tr1w8XLlyQMyTz0rkzEBQkvXVh1Sq5oyEiqvZkLXr79u3DmDFjcPToUcTHx0OtVqN79+64z1fnlM+jF7QIIW88RETVnI2cG//lkVfkxMTEwNPTEydOnECXLl1kisrMvP46MHEicPo0kJAAtG8vd0RERNWWrEXvUZmZmQCAWrVqlTg/Pz8f+fn5+u9Zf5/HUqvVUKvVRtetm19WO7Pj5ATr6GhY/fADtIsXQ9OqVYVXUWNzU0WYH+OYH+OYH+OqKj/lXV4hRPU4JqbVatGnTx9kZGTg4MGDJbaZPn06ZsyYUWz66tWr4eDg8KRDrLbcf/sNXSZORKFKhe0rVqDQyUnukIiITCo3NxevvPIKMjMz4eLiUmq7alP03nnnHWzbtg0HDx5E/fr1S2xTUk/P19cX6enpRncSkH4FxMfHIzIyEkqlskpjl50QsGnVCopz56D597+hHTOmQovX6NxUAebHOObHOObHuKrKT1ZWFjw8PMosetXi8ObYsWOxZcsW7N+/v9SCBwC2trawtbUtNl2pVJY7WRVpa1befhsYNw7Wy5bBeuxYwKbi/7Q1NjdVhPkxjvkxjvkx7nHzU95lZb16UwiBsWPHIi4uDrt370ZAQICc4Zi3114DHB2Bc+eAXr2Ae/fkjoiIqNqRteiNGTMGP/zwA1avXg1nZ2fcvn0bt2/fxoMHD+QMyzy5ukr36jk4ADt2SFdx/vab3FEREVUrsha9xYsXIzMzE926dYO3t7d+iI2NlTMs89W3L3DoENCgAXDpklT4tm2TOyoiompD9sObJQ3Dhg2TMyzz1qIFkJgIdOokPZqsVy/gX//ijetEROCzN2smT09g1y7gzTelYvfhh9JbGfLy5I6MiEhWLHo1lUoFLF0KLFwIWFsD338PdOgAzJ0L7N4N/P0gACIiS1ItblmgJ0ShAMaOlR5K/fLLwKlT0qDTuDHQpg2sWrZE7YICICxM6iUSEdVQLHqWIDwcSEoCVq+WXjh7/Dhw9Spw8SJw8SKsV69GJwCYPBmoVw8IDgaaNZM+g4OBpk2l2yGIiMwci56l8PUFPvro4ff0dP1b17UJCcg7fBgO6enAjRvSsH37w7YKBRAYCDzzzMOhWTPpsCkRkRlh0bNUHh5AVBQQFQWNWo34rVvRs2NHKC9dAs6efTicOwekpgLnz0vDypXS8k5OQNu2UgEMDgb8/aXBywuw4qliIqqeWPToIVdX6bxeWJjh9NRU6bVFR49KQ0ICkJMD7NkjDUWpVNJ9gn5+UhGsX18qhHXrSoNunIdLiUgGLHpUtrp1gRdekAYA0GiA5GSpAB47Bly+LJ0j/PNPoKBA+n75svF1OjpK6/X0lIY6dR6O677rBg8PoIRnrhIRVRSLHlWctTUQEiINI0c+nF5YKJ0PvHZNKoJXrwI3bwK3b0u9xdRUafzBA+D+feCPP6ShPJydDYugi4s0zcmp+GBvL/U4VSqpWD76aWdnOKhU0nlLIqrxWPSo6tjYSIc1/fyA0t58L4R0aFRXBO/cAdLSpKHoeFqadLFNerpUTLOzpaG8RbKi7Oykglh0+LtIWqtU6JiTA+tFix62K1pIVSrph4CV1cNBoXg4rmurK7hFx1UqKW82NoBSaTiuW2fRdenGdUW66JN2io4rldKgUj381I2zwJMFY9Ej01IopB6aszPQqFHZ7YUAMjKkgpie/vBTVwRzcgyH7GwgP18aCgoefurG8/OlJ9M8+nSakqb9zQqAByBd1FMTWFuXXmhLKq66T2vrh4ONjX7c2toaHe7dk34U2NhI7Yu2tbYuXmiLfi9pW48Wd920ouOPDkWXLc+0kn6gPLqd8m7byGCl1cL/3Dkobt6U8lNa25Ly8ui0okr6wWPscYMl/RuUtG/G9t1YPJWcpygshPfJk9KtVSZ49RKLHlVvCgXg7i4NjRtX3XqFkAqhrtjpiqGuMBYpnIX37+PU0aNo2awZbDQaw2Kq+9Rqiw9CSOc/Hy24RcfVamkoLHw4FP0uRPF16sZL+x+lENKyBQXSuh6l0UhDkRcyPw4rAHUA4MyZKllfTWMNIFTuIKoxGwDtAKjffVc6PWGC7RFZHoXi4WFGV1ejTYVajZs2NmjRs6dJfolWKV0B1BXXggLDwlr0U61+WFh1xbXop65Y6obCQkCjQWF+PpKOH0eLkBDYKBTF22k0xuMrbXtabfE2ugEwjLW0oaQ2j+7joz8mdNssuu3S4jC2nb8HrUaD1Nu3UdfTE1a6HyUl7c+j40U/S1NaL6zoD6GS1mVsWxWJp7TD6xWgFQL37t6FSyVefF0ZLHpENZlC8fD83hMi1GrccHBAqDn+KDABjVqNhK1b0bNnT1gxP8Vo1Goc3LoVPd3dTbI93kVMREQWg0WPiIgsBoseERFZDBY9IiKyGGZ9IYv4+2qhrKysMtuq1Wrk5uYiKysLSp5MNsDcGMf8GMf8GMf8GFdV+dHVAVHGVaRmXfSys7MBAL6+vjJHQkRE1UF2djZcjdyGpBBllcVqTKvV4ubNm3B2doaijEcrZWVlwdfXFykpKXBxcTFRhOaBuTGO+TGO+TGO+TGuqvIjhEB2djZ8fHxgZeT1Zmbd07OyskL9+vUrtIyLiwv/8ErB3BjH/BjH/BjH/BhXFfkx1sPT4YUsRERkMVj0iIjIYlhM0bO1tcW0adNgy5eRFsPcGMf8GMf8GMf8GGfq/Jj1hSxEREQVYTE9PSIiIhY9IiKyGCx6RERkMVj0iIjIYlhE0fvPf/4Df39/2NnZoX379khISJA7JJPYv38/XnjhBfj4+EChUGDTpk0G84UQmDp1Kry9vWFvb4+IiAhcunTJoM3du3cxZMgQuLi4wM3NDW+88QZycnJMuBdPxqxZs9C2bVs4OzvD09MT/fr1w4ULFwza5OXlYcyYMahduzacnJwwYMAApKamGrS5fv06evXqBQcHB3h6euLDDz9EYWGhKXfliVi8eDGaN2+uv2E4LCwM27Zt08+35NyUZPbs2VAoFJgwYYJ+miXnaPr06VAoFAZDYGCgfr6suRE13Nq1a4VKpRIrVqwQ586dEyNHjhRubm4iNTVV7tCeuK1bt4rJkyeLjRs3CgAiLi7OYP7s2bOFq6ur2LRpkzh9+rTo06ePCAgIEA8ePNC36dGjhwgNDRVHjx4VBw4cEI0aNRKDBw828Z5UvaioKLFy5Upx9uxZkZSUJHr27CkaNGggcnJy9G3efvtt4evrK3bt2iWOHz8unnnmGdGhQwf9/MLCQhEcHCwiIiLEqVOnxNatW4WHh4eYNGmSHLtUpTZv3iz+97//iYsXL4oLFy6Ijz/+WCiVSnH27FkhhGXn5lEJCQnC399fNG/eXIwfP14/3ZJzNG3aNNGsWTNx69Yt/XDnzh39fDlzU+OLXrt27cSYMWP03zUajfDx8RGzZs2SMSrTe7ToabVa4eXlJb744gv9tIyMDGFrayvWrFkjhBAiOTlZABCJiYn6Ntu2bRMKhULcuHHDZLGbQlpamgAg9u3bJ4SQcqFUKsWPP/6ob3P+/HkBQBw5ckQIIf2osLKyErdv39a3Wbx4sXBxcRH5+fmm3QETcHd3F8uWLWNuisjOzhZPP/20iI+PF127dtUXPUvP0bRp00RoaGiJ8+TOTY0+vFlQUIATJ04gIiJCP83KygoRERE4cuSIjJHJ78qVK7h9+7ZBblxdXdG+fXt9bo4cOQI3Nze0adNG3yYiIgJWVlY4duyYyWN+kjIzMwEAtWrVAgCcOHECarXaID+BgYFo0KCBQX5CQkJQt25dfZuoqChkZWXh3LlzJoz+ydJoNFi7di3u37+PsLAw5qaIMWPGoFevXga5APj3AwCXLl2Cj48PGjZsiCFDhuD69esA5M+NWT9wuizp6enQaDQGiQOAunXr4rfffpMpqurh9u3bAFBibnTzbt++DU9PT4P5NjY2qFWrlr5NTaDVajFhwgR07NgRwcHBAKR9V6lUcHNzM2j7aH5Kyp9unrk7c+YMwsLCkJeXBycnJ8TFxaFp06ZISkqy+NwAwNq1a3Hy5EkkJiYWm2fpfz/t27dHTEwMmjRpglu3bmHGjBno3Lkzzp49K3tuanTRIyqPMWPG4OzZszh48KDcoVQrTZo0QVJSEjIzM7F+/XoMHToU+/btkzusaiElJQXjx49HfHw87Ozs5A6n2nn++ef1482bN0f79u3h5+eHdevWwd7eXsbIavjVmx4eHrC2ti52VVBqaiq8vLxkiqp60O2/sdx4eXkhLS3NYH5hYSHu3r1bY/I3duxYbNmyBXv27DF4TZWXlxcKCgqQkZFh0P7R/JSUP908c6dSqdCoUSO0bt0as2bNQmhoKBYsWMDcQDpEl5aWhlatWsHGxgY2NjbYt28fvvrqK9jY2KBu3boWn6Oi3Nzc0LhxY1y+fFn2v58aXfRUKhVat26NXbt26adptVrs2rULYWFhMkYmv4CAAHh5eRnkJisrC8eOHdPnJiwsDBkZGThx4oS+ze7du6HVatG+fXuTx1yVhBAYO3Ys4uLisHv3bgQEBBjMb926NZRKpUF+Lly4gOvXrxvk58yZMwY/DOLj4+Hi4oKmTZuaZkdMSKvVIj8/n7kBEB4ejjNnziApKUk/tGnTBkOGDNGPW3qOisrJycHvv/8Ob29v+f9+HusyGDOwdu1aYWtrK2JiYkRycrJ46623hJubm8FVQTVVdna2OHXqlDh16pQAIObNmydOnTolrl27JoSQbllwc3MTP/30k/j1119F3759S7xloWXLluLYsWPi4MGD4umnn64Rtyy88847wtXVVezdu9fgsurc3Fx9m7fffls0aNBA7N69Wxw/flyEhYWJsLAw/XzdZdXdu3cXSUlJ4pdffhF16tSpEZecT5w4Uezbt09cuXJF/Prrr2LixIlCoVCIHTt2CCEsOzelKXr1phCWnaP3339f7N27V1y5ckUcOnRIRERECA8PD5GWliaEkDc3Nb7oCSHEwoULRYMGDYRKpRLt2rUTR48elTskk9izZ48AUGwYOnSoEEK6bWHKlCmibt26wtbWVoSHh4sLFy4YrOOvv/4SgwcPFk5OTsLFxUUMHz5cZGdny7A3VaukvAAQK1eu1Ld58OCBGD16tHB3dxcODg6if//+4tatWwbruXr1qnj++eeFvb298PDwEO+//75Qq9Um3puqN2LECOHn5ydUKpWoU6eOCA8P1xc8ISw7N6V5tOhZco4GDhwovL29hUqlEvXq1RMDBw4Uly9f1s+XMzd8tRAREVmMGn1Oj4iIqCgWPSIishgsekREZDFY9IiIyGKw6BERkcVg0SMiIovBokdERBaDRY+IiCwGix4REVkMFj2iauTOnTt455130KBBA9ja2sLLywtRUVE4dOgQAEChUGDTpk3yBklkxvg+PaJqZMCAASgoKMC3336Lhg0bIjU1Fbt27cJff/0ld2hENQKfvUlUTWRkZMDd3R179+5F165di8339/fHtWvX9N/9/Pxw9epVAMBPP/2EGTNmIDk5GT4+Phg6dCgmT54MGxvpd61CocDXX3+NzZs3Y+/evfD29sbcuXMRHR1tkn0jqi54eJOomnBycoKTkxM2bdqE/Pz8YvMTExMBACtXrsStW7f03w8cOIDXX38d48ePR3JyMpYsWYKYmBjMnDnTYPkpU6ZgwIABOH36NIYMGYJBgwbh/PnzT37HiKoR9vSIqpENGzZg5MiRePDgAVq1aoWuXbti0KBBaN68OQCpxxYXF4d+/frpl4mIiEB4eDgmTZqkn/bDDz/gH//4B27evKlf7u2338bixYv1bZ555hm0atUKX3/9tWl2jqgaYE+PqBoZMGAAbt68ic2bN6NHjx7Yu3cvWrVqhZiYmFKXOX36ND755BN9T9HJyQkjR47ErVu3kJubq2+neyt10e/s6ZGl4YUsRNWMnZ0dIiMjERkZiSlTpuDNN9/EtGnTMGzYsBLb5+TkYMaMGXjxxRdLXBcRPcSeHlE117RpU9y/fx8AoFQqodFoDOa3atUKFy5cQKNGjYoNVlYP/xM/evSowXJHjx5FUFDQk98BomqEPT2iauKvv/7CSy+9hBEjRqB58+ZwdnbG8ePHMXfuXPTt2xeAdAXnrl270LFjR9ja2sLd3R1Tp05F79690aBBA0RHR8PKygqnT5/G2bNn8dlnn+nX/+OPP6JNmzbo1KkTVq1ahYSEBCxfvlyu3SWShyCiaiEvL09MnDhRtGrVSri6ugoHBwfRpEkT8c9//lPk5uYKIYTYvHmzaNSokbCxsRF+fn76ZX/55RfRoUMHYW9vL1xcXES7du3E0qVL9fMBiP/85z8iMjJS2NraCn9/fxEbG2vqXSSSHa/eJLIAJV31SWSJeE6PiIgsBoseERFZDF7IQmQBeBaDSMKeHhERWQwWPSIishgsekREZDFY9IiIyGKw6BERkcVg0SMiIovBokdERBaDRY+IiCzG/wNkaVNtJCZEhwAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAdMAAADvCAYAAACpMT7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPzElEQVR4nO3dd3gU5fbA8e9syqaTQEKKQmihG6Q3KV46ooDUwFVARaTcKxfUH0oHAQUVFAWsFBGkKKgoYkSaEJAuNaBAgpAAAdJIz76/P4YsLCmkb0LO53nmye60PXuyydl55513NKWUQgghhBD5ZrB2AEIIIURpJ8VUCCGEKCAppkIIIUQBSTEVQgghCkiKqRBCCFFAUkyFEEKIApJiKoQQQhSQFFMhhBCigKSYCiGEEAUkxVSUekOHDqVKlSrWDiNf2rdvT/v27a0dRramTZuGpmnWDkOIEk+KqSgymqblatq+fbu1Qy3xqlSpkm3+unbtau3wGDp0KC4uLtYOw+pSUlJ4//33adiwIW5ubri7u1OvXj1efPFFTp8+bV5vz549TJs2jejoaOsFKwqVrbUDEA+uL7/80uL5ihUrCA4OzjS/Tp06BXqdTz/9FJPJVKB9lAaPPvoo48ePzzTfz8/PCtGIrPTp04fNmzcTFBTE8OHDSU1N5fTp02zatIlWrVpRu3ZtQC+m06dPZ+jQobi7u1s3aFEopJiKIvPvf//b4vnevXsJDg7ONP9eCQkJODk55fp17Ozs8hVfafPQQw/dN3fCevbv38+mTZuYNWsWb7zxhsWyDz/8UI5CH3DSzCusqn379tSvX5+DBw/Stm1bnJyczP+IvvvuO5544gn8/PwwGo1Ur16dmTNnkp6ebrGPe8+ZXrhwAU3TeOedd/jkk0+oXr06RqORpk2bsn///vvGdOPGDV555RUeeeQRXFxccHNzo1u3bhw9etRive3bt6NpGmvXrmXWrFk8/PDDODg40KFDB/76669M+82IxdHRkWbNmrFr1658ZCx777zzDpqmERYWlmnZ66+/jr29PTdv3gRg165d9OvXj8qVK2M0GqlUqRL/+9//SExMLNSY7rVu3ToaN26Mo6Mjnp6e/Pvf/+bSpUsW60RGRjJs2DAefvhhjEYjvr6+9OzZkwsXLpjXOXDgAF26dMHT0xNHR0eqVq3Kc889l+Nr9+jRg2rVqmW5rGXLljRp0sT8PDg4mMceewx3d3dcXFyoVatWpgJ5r7///huA1q1bZ1pmY2NDhQoVAP089KuvvgpA1apVzc31d7+/lStXmvNUvnx5Bg4cyMWLFy32efffTqtWrcx5WLJkSY5xiqIhR6bC6q5fv063bt0YOHAg//73v/H29gZg2bJluLi4MG7cOFxcXPjtt9+YMmUKsbGxzJs37777XbVqFXFxcYwYMQJN05g7dy5PP/00586dy/Fo9ty5c2zcuJF+/fpRtWpVrly5wscff0y7du04efJkpmbVt956C4PBwCuvvEJMTAxz585l8ODB7Nu3z7zO559/zogRI2jVqhVjx47l3LlzPPXUU5QvX55KlSrlKk+pqalERUVlmu/s7IyjoyP9+/fntddeY+3ateZ/1hnWrl1L586d8fDwAPSilpCQwMiRI6lQoQJ//PEHCxcu5J9//mHdunW5iievli1bxrBhw2jatClz5szhypUrvP/+++zevZvDhw+bmzv79OnDiRMn+M9//kOVKlW4evUqwcHBhIeHm5937twZLy8vJkyYgLu7OxcuXODbb7/N8fUHDBjAs88+y/79+2natKl5flhYGHv37jV/pk6cOEGPHj0IDAxkxowZGI1G/vrrL3bv3p3j/v39/QH46quvaN26Nba2Wf97ffrppzlz5gyrV69m/vz5eHp6AuDl5QXArFmzmDx5Mv379+eFF17g2rVrLFy4kLZt21rkCeDmzZt0796d/v37ExQUxNq1axk5ciT29vb3/XIhCpkSopiMHj1a3fuRa9eunQLUkiVLMq2fkJCQad6IESOUk5OTSkpKMs8bMmSI8vf3Nz8/f/68AlSFChXUjRs3zPO/++47BagffvghxziTkpJUenq6xbzz588ro9GoZsyYYZ63bds2Bag6deqo5ORk8/z3339fAerYsWNKKaVSUlJUxYoV1aOPPmqx3ieffKIA1a5duxzjUUopf39/BWQ5zZkzx7xey5YtVePGjS22/eOPPxSgVqxYYZ6XVW7nzJmjNE1TYWFh5nlTp07N9DvLypAhQ5Szs3O2yzNyUL9+fZWYmGiev2nTJgWoKVOmKKWUunnzpgLUvHnzst3Xhg0bFKD2799/37juFhMTo4xGoxo/frzF/Llz51q87/nz5ytAXbt2LU/7N5lM5s+zt7e3CgoKUh999JFFPjPMmzdPAer8+fMW8y9cuKBsbGzUrFmzLOYfO3ZM2draWszPeK13333XPC85OVk9+uijqmLFiiolJSVP8YuCkWZeYXVGo5Fhw4Zlmu/o6Gh+HBcXR1RUFG3atCEhIcGiZ2R2BgwYYD4SA2jTpg2gH3neLx6DQf/TSE9P5/r16+amvkOHDmVaf9iwYdjb22f7OgcOHODq1au89NJLFusNHTqUcuXK3fd9ZGjevDnBwcGZpqCgIIv3fPDgQXOTI8CaNWswGo307NnTPO/u3N66dYuoqChatWqFUorDhw/nOqbcysjBqFGjcHBwMM9/4oknqF27Nj/++KM5Lnt7e7Zv325ukr5XxpHZpk2bSE1NzXUMGc31a9euRSllnr9mzRpatGhB5cqVLfb/3Xff5aljm6ZpbNmyhTfffBMPDw9Wr17N6NGj8ff3Z8CAAbk6Z/rtt99iMpno378/UVFR5snHx4eAgAC2bdtmsb6trS0jRowwP7e3t2fEiBFcvXqVgwcP5jp2UXBSTIXVPfTQQxZFJsOJEyfo3bs35cqVw83NDS8vL3MHnJiYmPvuN+OfY4aMwprdP+kMJpOJ+fPnExAQgNFoxNPTEy8vL/78888sX/d+r5NxDjMgIMBiPTs7u2zP4WXF09OTjh07ZpoymhcB+vXrh8FgYM2aNQAopVi3bh3dunXDzc3NvF54eDhDhw6lfPnyuLi44OXlRbt27YDc5TavMnJQq1atTMtq165tXm40Gnn77bfZvHkz3t7etG3blrlz5xIZGWlev127dvTp04fp06fj6elJz549Wbp0KcnJyfeNY8CAAVy8eJGQkBBAP8958OBBBgwYYLFO69ateeGFF/D29mbgwIGsXbs2V4XVaDQyceJETp06xeXLl1m9ejUtWrRg7dq1jBkz5r7bnz17FqUUAQEBeHl5WUynTp3i6tWrFuv7+fnh7OxsMa9mzZoAFudgRdGTYiqs7u6jpAzR0dG0a9eOo0ePMmPGDH744QeCg4N5++23AXL1j83GxibL+XcflWRl9uzZjBs3jrZt27Jy5Uq2bNlCcHAw9erVy/J18/s6RcHPz482bdqwdu1aQO9BHR4eblEs0tPT6dSpEz/++CP/93//x8aNGwkODmbZsmVA7nJblMaOHcuZM2eYM2cODg4OTJ48mTp16piPmDVNY/369YSEhDBmzBguXbrEc889R+PGjYmPj89x308++SROTk7m/KxduxaDwUC/fv3M6zg6OrJz505+/fVXnnnmGf78808GDBhAp06dMnV+y4mvry8DBw5k586dBAQEsHbtWtLS0nLcxmQyoWkaP//8c5atEB9//HGuX18UL+mAJEqk7du3c/36db799lvatm1rnn/+/Pkif+3169fz+OOP8/nnn1vMj46ONncWyYuMI8ezZ8/yr3/9yzw/NTWV8+fP06BBg4IFfI8BAwYwatQoQkNDWbNmDU5OTjz55JPm5ceOHePMmTMsX76cZ5991jw/ODi4UOO4W0YOQkNDLXKQMe/uo2uA6tWrM378eMaPH8/Zs2d59NFHeffdd1m5cqV5nRYtWtCiRQtmzZrFqlWrGDx4MF9//TUvvPBCtnE4OzvTo0cP1q1bx3vvvceaNWto06ZNpk5lBoOBDh060KFDB9577z1mz57NxIkT2bZtGx07dszTe7ezsyMwMJCzZ8+am2yzG1WqevXqKKWoWrWq+QgzJ5cvX+bWrVsWR6dnzpwBKLWjgpVWcmQqSqSMo727j+5SUlJYtGhRsbz2vUeV69aty3QJR241adIELy8vlixZQkpKinn+smXLiuTawz59+mBjY8Pq1atZt24dPXr0sPhnm1VulVK8//77hR5LhiZNmlCxYkWWLFli0Ry7efNmTp06xRNPPAHo1xgnJSVZbFu9enVcXV3N2928eTPT7+fRRx8FyHVT7+XLl/nss884evSoxVE76JdG3Ss3+z979izh4eGZ5kdHRxMSEoKHh4e5x27G7+Pe3//TTz+NjY0N06dPz/QelVJcv37dYl5aWprF0WpKSgoff/wxXl5eNG7cONtYReGTI1NRIrVq1QoPDw+GDBnCf//7XzRN48svvyyWptMePXowY8YMhg0bRqtWrTh27BhfffVVns5v3s3Ozo4333yTESNG8K9//YsBAwZw/vx5li5dmqd9Xrp0yeLILIOLiwu9evUyP69YsSKPP/447733HnFxcZmKRe3atalevTqvvPIKly5dws3NjW+++ea+55LvJzU1lTfffDPT/PLlyzNq1Cjefvtthg0bRrt27QgKCjJfGlOlShX+97//AfpRVYcOHejfvz9169bF1taWDRs2cOXKFQYOHAjA8uXLWbRoEb1796Z69erExcXx6aef4ubmRvfu3e8bZ/fu3XF1deWVV17BxsaGPn36WCyfMWMGO3fu5IknnsDf35+rV6+yaNEiHn74YR577LFs93v06FEGDRpEt27daNOmDeXLl+fSpUssX76cy5cvs2DBAvMXmYxCN3HiRAYOHIidnR1PPvkk1atX58033+T111/nwoUL9OrVC1dXV86fP8+GDRt48cUXeeWVV8yv6efnx9tvv82FCxeoWbMma9as4ciRI3zyySdlZjCTEsMKPYhFGZXdpTH16tXLcv3du3erFi1aKEdHR+Xn56dee+01tWXLFgWobdu2mdfL7tKYrC6vANTUqVNzjDMpKUmNHz9e+fr6KkdHR9W6dWsVEhKi2rVrZ3EZS8alMevWrbPYPuP1ly5dajF/0aJFqmrVqspoNKomTZqonTt3ZtpndnK6NObu957h008/VYBydXW1uBQlw8mTJ1XHjh2Vi4uL8vT0VMOHD1dHjx7NFHdeLo3JLr7q1aub11uzZo1q2LChMhqNqnz58mrw4MHqn3/+MS+PiopSo0ePVrVr11bOzs6qXLlyqnnz5mrt2rXmdQ4dOqSCgoJU5cqVldFoVBUrVlQ9evRQBw4cuG+cGQYPHqwA1bFjx0zLtm7dqnr27Kn8/PyUvb298vPzU0FBQerMmTM57vPKlSvqrbfeUu3atVO+vr7K1tZWeXh4qH/9619q/fr1mdafOXOmeuihh5TBYMh0mcw333yjHnvsMeXs7KycnZ1V7dq11ejRo1VoaKh5nYy/nQMHDqiWLVsqBwcH5e/vrz788MNc50EUHk0pK/SSEEIIUSDt27cnKiqK48ePWzsUgZwzFUIIIQpMiqkQQghRQFJMhRBCiAKSc6ZCCCFEAcmRqRBCCFFAUkyFEEKIApJBG7JgMpm4fPkyrq6u2Q77JYQQ4sGnlCIuLg4/Pz/z3aSyIsU0C5cvX871DZuFEEI8+C5evMjDDz+c7XIppllwdXUF9OTdfduq+0lNTeWXX36hc+fOMpTXPSQ32ZPc5Ezykz3JTfYKKzexsbFUqlTJXBeyI8U0CxlNu25ubnkupk5OTri5uckH+x6Sm+xJbnIm+cme5CZ7hZ2b+53ykw5IQgghRAFJMRVCCCEKSJp5i8g//8CBA1ChArRpY+1ohBBCFCUppkVk7VoYPx769ZNiKsSDRClFWloa6enp1g6F1NRUbG1tSUpKKhHxlCS5zY2NjQ22trYFvgxSimkRqVFD//n339aNQwhReFJSUoiIiCAhIcHaoQB6Yffx8eHixYtyTfw98pIbJycnfH19sbe3z/frSTEtItWr6z//+guUAvmcC1G6mUwmzp8/j42NDX5+ftjb21u9gJlMJuLj43FxcclxQIGyKDe5UUqRkpLCtWvXOH/+PAEBAfnOo1WL6c6dO5k3bx4HDx4kIiKCDRs20KtXL/NypRRTp07l008/JTo6mtatW7N48WICAgJy3O9HH33EvHnziIyMpEGDBixcuJBmzZoV8buxVK2a/jM2FqKiwMurWF9eCFHIUlJSMJlMVKpUCScnJ2uHA+gFIyUlBQcHBymm98htbhwdHbGzsyMsLMy8fn5YNfu3bt2iQYMGfPTRR1kunzt3Lh988AFLlixh3759ODs706VLF5KSkrLd55o1axg3bhxTp07l0KFDNGjQgC5dunD16tWiehtZcnSEjMEypKlXiAeHFK0HT2H8Tq16ZNqtWze6deuW5TKlFAsWLGDSpEn07NkTgBUrVuDt7c3GjRsZOHBgltu99957DB8+nGHDhgGwZMkSfvzxR7744gsmTJiQ5TbJyckkJyebn8fGxgL6CezU1NRcv5+MdTN+Vqtmwz//GDh9Oo3Gjcv2ne7uzY24Q3KTs5KSn9TUVJRSmEwmTCaTVWPJkHEHzYy4xB15yY3JZEIpRWpqKjY2NhbLcvu5K7HnTM+fP09kZCQdO3Y0zytXrhzNmzcnJCQky2KakpLCwYMHef31183zDAYDHTt2JCQkJNvXmjNnDtOnT880/5dffslXc05wcDAA9vaPAv78/PNfeHiE5nk/D6KM3IjMJDc5s3Z+bG1t8fHxIT4+npSUFKvGcq+4uDhrh1Bi5SY3KSkpJCYmsnPnTtLS0iyW5bazWYktppGRkQB4e3tbzPf29jYvu1dUVBTp6elZbnP69OlsX+v1119n3Lhx5ucZYzF27tw5z8MJBgcH06lTJ+zs7Dh+3MCvv4KNTU26d6+e6/08iO7NjbhDcpOzkpKfpKQkLl68iIuLS77PqxW2jDuaWOMOV9WqVePll1/m5ZdfLtbXza285CYpKQlHR0fatm2b6Xeb0VJ5PyW2mBYno9GI0WjMNN/Ozi5ff7wZ29WqpT8/d86AnZ2cZ4H857QskNzkzNr5SU9PR9M0DAZDiTlvmtF8mRFXVu5XSKZOncq0adPy/Nr79+/H2dm5QLlo3749jz76KAsWLMj3PrKTm9xkMBgMaJqW5Wcst5+5EltMfXx8ALhy5Qq+vr7m+VeuXOHRRx/NchtPT09sbGy4cuWKxfwrV66Y91ec7r48RgghrCEiIsL8eM2aNUyZMoXQ0DunnVxcXMyPlVKkp6dja3v/0uAllyhYKBlfr7JQtWpVfHx82Lp1q3lebGws+/bto2XLllluY29vT+PGjS22MZlMbN26NdttilJGMY2KgpiYYn95IUQRUwpu3bLOpHLZp9HHx8c8lStXDk3TzM9Pnz6Nq6srmzdvpnHjxhiNRn7//Xf+/vtvevbsibe3Ny4uLjRt2pRff/3VYr9VqlSxOKLUNI3PPvuM3r174+TkREBAAN9//32B8vvNN99Qr149jEYjVapU4d1337VYvmjRIgICAnBwcMDb25u+ffual61fv55WrVrh7OxMhQoV6NixI7du3SpQPDmx6pFpfHw8f9112Hb+/HmOHDlC+fLlqVy5MmPHjuXNN98kICCAqlWrMnnyZPz8/CyuRe3QoQO9e/dmzJgxAIwbN44hQ4bQpEkTmjVrxoIFC7h165a5d29xcnODihXh6lX98phGjYo9BCFEEUpIgLsO7IpVfLx+CV5hmDBhAu+88w7VqlXDw8ODixcv0r17d2bNmoXRaGTFihU8+eSThIaGUrly5Wz3M336dObOncu8efNYuHAhgwcPJiwsjPLly+c5poMHD9K/f3+mTZvGgAED2LNnD6NGjaJChQoMHTqUAwcO8N///pcvv/ySVq1acePGDXbt2gXoR+ODBw9m+vTpDBw4kFu3brFr1y5zD98ioaxo27ZtCsg0DRkyRCmllMlkUpMnT1be3t7KaDSqDh06qNDQUIt9+Pv7q6lTp1rMW7hwoapcubKyt7dXzZo1U3v37s1TXDExMQpQMTExedouJSVFbdy4UaWkpJjntWypFCi1Zk2edvXAySo3Qie5yVlJyU9iYqI6efKkSkxMNM+Lj9f/vq0xxccrlZ6erm7evKnS09Nz9R6WLl2qypUrZ36e8T9448aN9922Xr16auHChebn/v7+av78+ebngJo0adJduYlXgNq8eXO2+2zXrp16+eWXs1w2aNAg1alTJ4t5r776qqpbt65SSqlvvvlGubm5qdjY2EzbHjx4UAHq6NGjucpNVr/bDLmtB1Y9Mm3fvn2O3xQ0TWPGjBnMmDEj23UuXLiQad6YMWPMR6rWVqMGhITIwA1CPIicnPQjRGu9dmEdaDVp0sTieXx8PNOmTePHH38kIiKCtLQ0EhMTCQ8Pz3E/gYGB5sfOzs64ubnle8CcU6dOmccYyNC6dWsWLFhAeno6nTp1wt/fn2rVqtG1a1e6du1qbmJu0KABHTp04LHHHqNz58506dKFvn374uHhka9YcqPEnjN9UGQMeC+dkIR48GgaODtbZyrMK2GcnZ0tnr/yyits2LCB2bNns2vXLo4cOcIjjzxy3+tr7+35qmlakQ0m4erqyqFDh1i9ejW+vr5MmTKFBg0aEB0djY2NDVu2bGHt2rXUrVuXhQsXUqtWLc6fP18ksYAU0yInPXqFEKXN7t27GTp0KL179+aRRx7Bx8cny1bAolSnTh12796dKa6aNWuaRymytbWlY8eOzJ07lz///JMLFy7w22+/AXohb9GiBdOmTePw4cPY29uzYcOGIou3xF4a86CQW7EJIUqbgIAAvv32W5588kk0TWPy5MlFdoR57do1jhw5YjHP19eX8ePH07RpU2bOnMmAAQMICQnhww8/ZNGiRQBs2rSJc+fO0bZtWzw8PPjpp58wmUzUqlWLffv28euvv9KqVSuqVq3K/v37uXbtGnXq1CmS9wBSTItcRjG9dEnv+VdCbjYhhBDZeu+993juuedo1aoVnp6e/N///V+uRwLKq1WrVrFq1SqLeTNnzmTSpEmsXbuWKVOmMHPmTHx9fZkxYwZDhw4FwN3dnW+//ZZp06aRlJREQEAAq1evpl69epw6dYqdO3eyYMEC4uLi8Pf359133812LPjCoKmcegCVUbGxsZQrV46YmJg8Dyf4008/0b17d/O5A6XAw0O/zvTYMahfv6iiLtmyyo3QSW5yVlLyk5SUxPnz56latWqJGU7QZDIRGxuLm5tbiRmVqaTIS25y+t3mth5I9ouYpklTrxBCPOikmBYD6dErhBAPNimmxUB69AohxINNimkxkGZeIYR4sEkxLQbSzCuEEA82KabFIKOZNywM7jOAiBBCiFJIimkx8PXV7+5gMkExDyIihBCiGEgxLQaaBg0a6I8//NC6sQghhCh8UkyLycyZ+s+PPoKDB60bixBCiMIlxbSYdGyfxrSOv2MywUsvQXq6tSMSQojCc+HCBTRNyzTOblkhxbQ4xMRAYCBTtrWnkXMoBw7Axx9bOyghRFkxdOhQNE3LNHXt2rVY42jfvj1jx44t1tcsLlJMi0O5clCjBlp6OmtrvA7AG29AZKSV4xJClBldu3YlIiLCYlq9erW1w3pgSDEtLm+9BQYD1Y9u4Llau4mJgVGj9B6+QohSSim4dcs6Ux7vUWI0GvHx8bGYPDw8ABg0aBADBgywWD81NRVPT09WrFgBwM8//8xjjz2Gu7s7FSpUoEePHvxdyCPRfPPNN9SrVw+j0UiVKlV49913LZYvWrSIgIAAHBwc8Pb2pm/fvuZl69ev55FHHsHR0ZEKFSrQuXNnbt26Vajx5USKaXGpWxeeew6A942vYWuj2LABJk2yclxCiPxLSAAXF+tMCQmF9jYGDx7MDz/8QHx8vHneli1bSEhIoHfv3gDcunWLcePGceDAAbZu3YrBYKB3796Fdp/TgwcP0r9/fwYOHMixY8eYNm0akydPZtmyZQAcOHCA//73v8yYMYPQ0FB+/vln2rZtC0BERARBQUE899xznDp1iu3bt9O7d2+K86Zocj/T4jR9Onz1FS5/7mHLf76jw8JezJkD1arBCy9YOzghxINs06ZNuLi4WMx74403eOONN+jSpQvOzs5s2LCBZ555BtDvM/rUU0/h6uoKQJ8+fSy2/eKLL/Dy8uLkyZPUL4R7S7733nt06NCByZMnA1CzZk1OnjzJvHnzGDp0KOHh4Tg7O9OjRw9cXV3x9/enYcOGgF5M09LSePrpp/H39wegXr16RXYP1qzIkWlx8vODceMA+NcvE5g2KQ3Qe/f+8os1AxNC5IuTE8THW2dycspTqI8//jhHjhyxmF566SUAbG1t6d+/P1999RWgH4V+9913DB482Lz92bNnCQoKolq1ari5uVGlShUAwsPDCyWVp06donXr1hbzWrduzdmzZ0lPT6dTp074+/tTrVo1nnnmGb766isSbh+dN2jQgA4dOvDII4/Qr18/Pv30U27evFkoceWWFNPi9tpr4OkJoaFMeehz/v1v/TKZvn3h+HFrByeEyBNNA2dn60yalqdQnZ2dqVGjhsVUvnx58/LBgwezdetWrl69ysaNG3F0dLTo7fvkk09y48YNPv30U/bt28e+ffsASCmmMVJdXV05dOgQq1evxtfXlylTptCgQQOio6OxsbEhODiYzZs3U7duXRYuXEidOnUICwsrlthAimnxc3ODKVMA0KZN5bMF8bRtC3Fx8NRTEBVl5fiEEGVSq1atqFSpEmvWrOGrr76iX79+2NnZAXD9+nVCQ0OZNGkSHTp0oE6dOoV+5FenTh12795tMW/37t3UrFkTGxsbQD+C7tixI3PnzuXPP//kwoUL/PbbbwBomkbr1q2ZPn06hw8fxt7enk2bNhVqjDmRc6bWMGIEvP8+/P03xo/e49tvp9CsGZw7px+h/vIL2NtbO0ghxIMkOTmZyHuux7O1tcXT09P8fNCgQSxZsoQzZ86wbds283wPDw8qVKjAJ598gq+vL+Hh4UyYMCFfcVy7di3TwA6+vr6MHz+epk2bMnPmTAYMGEBISAgffvghixYtAvRzvufOnaNt27Z4eHjw008/YTKZqFWrFvv27WPr1q107tyZihUrsm/fPq5du0bNmjXzFWO+KJFJTEyMAlRMTEyetktJSVEbN25UKSkp9195zRqlQCkXF6UiI9Xx40q5uuqzRoxQymTKZ/AlVJ5yU8ZIbnJWUvKTmJioTp48qRITE60ax93S09PVzZs3VXp6eo7rDRkyRAGZplq1almsd/LkSQUof39/Zbrnn1BwcLCqU6eOMhqNKjAwUG3fvl0BasOGDUoppc6fP68Adfjw4WzjaNeuXZZxzJw5Uyml1Pr161XdunWVnZ2dqly5spo3b5552127dql27dopDw8P5ejoqAIDA9WaNWvMcXfp0kV5eXkpo9GoatasqT744INc5UapnH+3ua0HJb6Y+vv7Z5n8UaNGZbn+0qVLM61rNBrz9JrFUkxNJqWaNtWr5+338sMPSmmaPmvBgjy9dIlXUv4hlkSSm5yVlPyU5mJaFuUlN4VRTEv8OdP9+/dbjNgRHBwMQL9+/bLdxs3NzWKb4jwJnWuaBnPn6o8/+QTOnKFHD31sB4CxY+HVV2UMXyGEKA1KfDH18vKyGLFj06ZNVK9enXbt2mW7jaZpFtt4e3sXY8R50L49PPEEpKXp4wuiF9CJE/XF77yjLy7mHt5CCCHyqFR1QEpJSWHlypWMGzcOLYdu4fHx8fj7+2MymWjUqBGzZ8+mXr162a6fnJxMcnKy+XnGhb6pqamkpqbmOr6MdfOyDTNnYrt5M9o335D222+oNm2YOhXq1NEYPtyGLVs0mjVT/PJLGg8/nPvdljT5yk0ZIbnJWUnJT2pqKkopTCZToY36U1Dq9gg/GXGJO/KSG5PJhFKK1NRUc8/hDLn93GlKFeN4SwW0du1aBg0aRHh4OH5+flmuExISwtmzZwkMDCQmJoZ33nmHnTt3cuLECR7OphpNmzaN6dOnZ5q/atUqnPJ4YXR+NPjoI6oEB3PL25vtCxaQ5ugIwLlzbsyZ05xr15zo3PkCo0YdLfJYhBBZs7W1xcfHh0qVKmEv3e0fKCkpKVy8eJHIyEjS0tIsliUkJDBo0CBiYmJwc3PLdh+lqph26dIFe3t7fvjhh1xvk5qaSp06dQgKCmJmxh2675HVkWmlSpWIiorKMXlZvVZwcDCdOnUyX5+VKzEx2DZpghYWhmnoUNI/+cS8aMcOjU6dbHF1VYSHp+HsnPvdliT5zk0ZILnJWUnJT3JyMuHh4fj7++N4+wuvtSmliIuLw9XVNcfWurIoL7lJTEwkLCyMypUrYzQaLZbFxsbi6el532Jaapp5w8LC+PXXX/n222/ztJ2dnR0NGzbkr7/+ynYdo9GYKYEZ2+bnjzfP23l6wooV0L49hmXLMPTsCb16AdChA1SvDn//rfHdd3YMGZLncEqU/Oa0LJDc5Mza+TEYDGiaRlJSEs4l5FttRvOlpmkYDCW+C0yxyktukpKS0DQNR0fHTM28uf3MlZpiunTpUipWrMgTTzyRp+3S09M5duwY3bt3L6LICknbtnrvo7lzYfhwaNECfHzQNHj+eb1/0mefUeqLqRCllY2NDe7u7ly9ehUAJycnqx8NmkwmUlJSSEpKkmJ6j9zkRilFQkICV69exd3dPVMhzYtSUUxNJhNLly5lyJAh2Npahvzss8/y0EMPMWfOHABmzJhBixYtqFGjBtHR0cybN4+wsDBeKA23ZZkxA7ZsgaNH9dvI/PADaBpDhui3avv9dwgNhVq1rB2oEGWTj48PgLmgWptSisTERBwdHa1e2EuavOTG3d3d/LvNr1JRTH/99VfCw8N57vb9QO8WHh5u8a3j5s2bDB8+nMjISDw8PGjcuDF79uyhbt26xRly/hiNsHIlNG4MP/6oX386YgR+ftC9O2zaBJ9/fufyVCFE8dI0DV9fXypWrGj13sWgn0/euXMnbdu2lVME98htbuzs7Ap0RJqhVBTTzp07Z3uT1+3bt1s8nz9/PvPnzy+GqIpI/fowZw6MH6/fru1f/4KAAF54QS+my5fDrFkgfzdCWI+NjU2h/AMujDjS0tJwcHCQYnqP4s6NNLKXRGPHwuOPQ0ICPPMMpKXRvTt4e8PVq/pBqxBCiJJDimlJZDDoh6DlysG+fTB7NnZ2MHSovvizz6wanRBCiHtIMS2pKlWC27ceYsYM+OMPMk4Zb94Mx45ZLzQhhBCWpJiWZEFBMGCAPtr9kCHUrJRI375gMumnVEvPcBtCCPFgk2JakmmafnTq6wunT8Mbb/DWW/qNw4OD4eefrR2gEEIIkGJa8pUvf+ck6YIFVL+4nf/+V386frx+wxkhhBDWJcW0NOjeXR8VCWDYMCb+Nw5PTzh1Cj791LqhCSGEkGJaerz7LlSpAhcu4D5jHBk3uZkyBaKjrRmYEEIIKaalhasrLFumn0f97DNGPPwjdepAVJQ+8mBKirUDFEKIsitfxfTixYv8888/5ud//PEHY8eO5ZO7bh0mikC7dvqADoDNiBf4ePZ17Ozgm2/g6achMdG64QkhRFmVr2I6aNAgtm3bBkBkZCSdOnXijz/+YOLEicyYMaNQAxT3mDULateGyEjarBnD99+Dg4M+KtITT0B8vLUDFEKIsidfxfT48eM0a9YMgLVr11K/fn327NnDV199xbJlywozPnEvR0f93qc2NvD113SNXcuWLXor8LZt0KmTFFQhhChu+Sqmqamp5ptp//rrrzz11FMA1K5dm4iIiMKLTmStaVP9BqcAI0fStmYkW7eChwfs3Qv9+8slM0IIUZzyVUzr1avHkiVL2LVrF8HBwXTt2hWAy5cvU6FChUINUGRj0iRo2BBu3ICxY2naVB9m0NFR/zlypIyQJIQQxSVfxfTtt9/m448/pn379gQFBdGgQQMAvv/+e3Pzryhi9vb6zU01DdasgT17aN4cvv5aHyf/s8/006tCCCGKXr6Kafv27YmKiiIqKoovvvjCPP/FF19kyZIlhRacuI+GDTGPfv+//4HJxFNPwcKF+qzJk+Grr6wXnhBClBX5KqaJiYkkJyfj4eEBQFhYGAsWLCA0NJSKFSsWaoDiPt58E1xc4I8/YPVqAEaNgtde0xePHQsxMdYLTwghyoJ8FdOePXuyYsUKAKKjo2nevDnvvvsuvXr1YvHixYUaoLgPHx94/XX98YQJ+g3F0Zt4a9XSB3WYO9eK8QkhRBmQr2J66NAh2rRpA8D69evx9vYmLCyMFStW8MEHHxRqgCIX/vc/qFwZ/vlHH3YQsLWFt97SF8+fD5cuWTE+IYR4wOWrmCYkJODq6grAL7/8wtNPP43BYKBFixaEhYUVaoAiFxwd4e239cdvvWWunD17QuvW+shIU6daMT4hhHjA5auY1qhRg40bN3Lx4kW2bNlC586dAbh69Spubm6FGqDIpQEDoGVLvZl34kRA7+ib0cS7dCmcOGHF+IQQ4gGWr2I6ZcoUXnnlFapUqUKzZs1o2bIloB+lNmzYsFADFLmkaXp7LsDy5XDwIACtWunj9ppM+ilVIYQQhS9fxbRv376Eh4dz4MABtmzZYp7foUMH5mf8QxfFr3lzGDxYf/y//5lHbZg9Wx99cNMmfchBIYQQhSvft2Dz8fGhYcOGXL582XwHmWbNmlG7du1CC07kw5w5+jnUXbvg228BvVfviBH64nHjID3divEJIcQDKF/F1GQyMWPGDMqVK4e/vz/+/v64u7szc+ZMTCZTYcco8qJSJXjlFf3xa69BcjIA06dDuXJw5Ih+W1QhhBCFJ1/FdOLEiXz44Ye89dZbHD58mMOHDzN79mwWLlzI5MmTCztGkVevvQa+vnDunHk4JE9PfUQk0PsnxcVZMT4hhHjA5KuYLl++nM8++4yRI0cSGBhIYGAgo0aN4tNPPy3UW7BNmzYNTdMspvs1I69bt47atWvj4ODAI488wk8//VRo8ZQaLi76yEigF9PbrQX/+Q/UqAFXrty5BlUIIUTB5auY3rhxI8uiVrt2bW7cuFHgoO5Wr149IiIizNPvv/+e7bp79uwhKCiI559/nsOHD9OrVy969erF8ePHCzWmUiEoSG/XDQ+HHTsAfWz8efP0xe++C3JJsBBCFI58FdMGDRrw4YcfZpr/4YcfEhgYWOCg7mZra4uPj4958vT0zHbd999/n65du/Lqq69Sp04dZs6cSaNGjbKM9YHn6Kjf2BT0S2Vu69kT2rfXT6VmjEIohBCiYGzzs9HcuXN54okn+PXXX83XmIaEhHDx4sVCb1Y9e/Ysfn5+ODg40LJlS+bMmUPlypWzXDckJIRx48ZZzOvSpQsbN27M8TWSk5NJvt1RByA2NhbQb4Kempqa61gz1s3LNkVJGzwY208/Ra1fT9r8+XrzL/pADs2b27J6tcbYsakUx6XBJS03JYnkJmeSn+xJbrJXWLnJ7faaUvm7hfTly5f56KOPOH36NAB16tThxRdf5M033+STTz7Jzy4z2bx5M/Hx8dSqVYuIiAimT5/OpUuXOH78uHk4w7vZ29uzfPlygoKCzPMWLVrE9OnTuXLlSravM23aNKZPn55p/qpVq3ByciqU92IVStFh1ChcIiI49PLLXHz8cfOi+fMbsWNHJRo0uMr06SFWDFIIIUquhIQEBg0aRExMTI4j/OW7mGbl6NGjNGrUiPQiupAxOjoaf39/3nvvPZ5//vlMy/NbTLM6Mq1UqRJRUVF5Gh4xNTWV4OBgOnXqhJ2dXa63K0qG2bOxmTYN0+OPk37XABvnz0P9+rakpmps3pxGhw6F9jHIUknMTUkhucmZ5Cd7kpvsFVZuYmNj8fT0vG8xzVczr7W4u7tTs2ZN/vrrryyX+/j4ZCqaV65cwcfHJ8f9Go1GjEZjpvl2dnb5+iXkd7siMXQoTJuGYds2DJcvg78/ADVrwsiR8MEHMGmSLZ07gyHfQ3jkXonKTQkjucmZ5Cd7kpvsFTQ3ud22GP59Fp74+Hj+/vtvfH19s1zesmVLtm7dajEvODjYfF63TPL3h4zm3S+/tFg0aRK4uurD+K5fb4XYhBDiAVGii+krr7zCjh07uHDhAnv27KF3797Y2NiYm3GfffZZXr+rS+rLL7/Mzz//zLvvvsvp06eZNm0aBw4cYMyYMdZ6CyXDkCH6zxUrzOP1Anh53RksaeJEkD4MQgiRP3lq5n366adzXB4dHV2QWDL5559/CAoK4vr163h5efHYY4+xd+9evLy8AAgPD8dwV9tkq1atWLVqFZMmTeKNN94gICCAjRs3Ur9+/UKNq9Tp0wdGj4azZyEkRL+VzG3jxsFHH8Fff8HKlTBsmBXjFEKIUipPxbRcuXL3Xf7ss88WKKC7ff311zku3759e6Z5/fr1o1+/foUWwwPBxUUvqCtW6Nec3lVMXVz0gjphAixeLMVUCCHyI0/FdOnSpUUVhyhqQ4boxXTNGliwQB/U4bbnnoMpU2D/fv38aePG1gtTCCFKoxJ9zlQUovbtoXJliImB77+3WOTlBX376o8XLy7+0IQQorSTYlpWGAzwzDP647uGF8wwcqT+c/VqKORT30II8cCTYlqWZJzP3rIFIiIsFrVuDfXqQUJCpitohBBC3IcU07KkZk2985HJBF99ZbFI0+4cnS5ebHEFjRBCiPuQYlrWZFxzunx5por5zDPg7AynTsHOnVaITQghSikppmVN//5gNMLx43D4sMUiNzcYNEh/LB2RhBAi96SYljXu7tCrl/44h45I69frAzkIIYS4PymmZVFGU+/KlZCUZLGoYUPo1g3S02HGDCvEJoQQpZAU07Koc2f9mtMbN+CbbzItnjlT/7lyJZw8WcyxCSFEKSTFtCyysYEXXtAff/xxpsWNG0Pv3nr/pKlTizk2IYQohaSYllXPP68X1V27sjz8nDFDv1xm/fpM/ZSEEELcQ4ppWeXnB08+qT/+5JNMi+vXh9t3umPKlGKMSwghSiEppmXZiBH6z+XLITEx0+KpU/WD102bYO/eYo5NCCFKESmmZVnnzlClij4Y77p1mRbXrHlnBELp2SuEENmTYlqWGQwwfLj+OIuOSAATJ+pHp5s3w4EDxRibEEKUIlJMy7rnngNbW9izRx8V6R7Vq98ZFWnWrGKOTQghSgkppmWdjw889ZT+OJuj09df13v2btwIf/5ZfKEJIURpIcVU3OmI9OWX+j3Y7lGnzp2bh8+eXYxxCSFEKSHFVEDHjlCtGsTEwJo1Wa4yaZL+c+1aCA0txtiEEKIUkGIqctURKTBQbw1WSo5OhRDiXlJMhW7YML0j0r59cPRolqtkHJ2uXKmvJoQQQifFVOi8vfUBeSHbo9OmTWHwYDCZ9BuJ37pVjPEJIUQJJsVU3JHREWnlSoiPz3KVhQvh4Yfh7Fl49dVijE0IIUowKabijscfhxo1IC4Ovv46y1U8PGDZMv3x4sX6YA5CCFHWSTEVdxgM8OKL+uPFi/XeRlno0AFefll//NxzcP16McUnhBAlVIkupnPmzKFp06a4urpSsWJFevXqReh9rstYtmwZmqZZTA4ODsUU8QNg6FBwdIRDh3I87JwzR7/+NDJSmnuFEKJEF9MdO3YwevRo9u7dS3BwMKmpqXTu3Jlb9+n54ubmRkREhHkKCwsrpogfAF5eMHq0/njKlGyPTh0d4Ysv9MfLl2d5S1QhhCgzSnQx/fnnnxk6dCj16tWjQYMGLFu2jPDwcA4ePJjjdpqm4ePjY568vb2LKeIHxGuvgbMzHDwI332X7WotWugdgE2mO5fNCCFEWWRr7QDyIiYmBoDy5cvnuF58fDz+/v6YTCYaNWrE7NmzqVevXrbrJycnk5ycbH4eGxsLQGpqKqmpqbmOL2PdvGxTIrm7Y/jPf7B56y3UpEmkdeumn0/NwtSp8N13tmzYoLFnTxpNm2Z9JPvA5KYISG5yJvnJnuQme4WVm9xurymVTTteCWMymXjqqaeIjo7m999/z3a9kJAQzp49S2BgIDExMbzzzjvs3LmTEydO8PDDD2e5zbRp05g+fXqm+atWrcLJyanQ3kNpYhcfT6cXX8QuIYH9r7zC5ccey3bdDz5oyG+/VSYw8BozZuwpxiiFEKJoJSQkMGjQIGJiYnBzc8t2vVJTTEeOHMnmzZv5/fffsy2KWUlNTaVOnToEBQUxc+bMLNfJ6si0UqVKREVF5Zi8rF4rODiYTp06YWdnl+vtSirDm29iM2MGqmZN0o4c0UdIykJYGNSrZ0tKisbmzWl06JD5I/Wg5aYwSW5yJvnJnuQme4WVm9jYWDw9Pe9bTEtFM++YMWPYtGkTO3fuzFMhBbCzs6Nhw4b89ddf2a5jNBoxGo1ZbpufX0J+tytxxo+HDz9EO3MGu3Xr4Nlns1ytRg146SX44AOYPNmWzp2zbRV+cHJTBCQ3OZP8ZE9yk72C5ia325boDkhKKcaMGcOGDRv47bffqFq1ap73kZ6ezrFjx/D19S2CCB9wbm56ZySA6dMhh3MHEyeCiwscOAAjR2bbCVgIIR5IJbqYjh49mpUrV7Jq1SpcXV2JjIwkMjKSxMRE8zrPPvssr7/+uvn5jBkz+OWXXzh37hyHDh3i3//+N2FhYbzwwgvWeAul35gxULEinDt3Z+ijLFSsCJ9/rh+RfvIJjB0rBVUIUXaU6GK6ePFiYmJiaN++Pb6+vuZpzV333AwPDyciIsL8/ObNmwwfPpw6derQvXt3YmNj2bNnD3Xr1rXGWyj9nJ0h48vKzJlw17nle/Xvf+fa0w8+0DeTgiqEKAtK9DnT3PSN2r59u8Xz+fPnM3/+/CKKqIx66SWYNw8uXoRPP9WPVrMxZAgkJupNvW+/DUlJ+s/szqEKIcSDQP7FiftzcLgzKsPs2Xq1zMFLL0HG95n339dv3fbnn0UcoxBCWJEUU5E7zz8P/v4QEaEPgn8fY8fqgyd5ecGxY9CqlS0bNtTAZCr6UIUQorhJMRW5Y2+vj9ULMGOGfou2+zTDP/UUHD+u/0xJ0Vi+vB4DBtgQF1cM8QohRDGSYipy79ln9QF5Y2IgKEivkv/8k+MmFSvCxo2weHEatrbpfPedgVat9M7BGRIT9QNeIYQoraSYityztYUdO/RrTu3sYNMmqFtXb/bNof1W0+D55xWzZu3Gx0dx/Lh+HjUoSN/cxQX8/PRLa4QQojSSYiryJqO59/Bh/Sg1Lg5GjYL27eE+95qtVesmISFpNGkCN27oLcWnTt2pw6NGwb59Rf8WhBCisEkxFflTrx78/rveXdfZGXbtggYN4P/+T2/XDQ2FtLRMmz30EOzcqff2nT0bfvpJbynu3RtSUqBPH7hypfjfjhBCFESJvs5UlHA2NvDf/0LPnjBiBGzZAnPn3lluZwcBAVCnDoaaNXk4KQmtQgUca9Vi7MueevvvbcuW6TcYDw2FAQMgOFjfPDuRkfDrr7B3L/j6QmAgPPKI3uH4rt0KIUSxkGIqCs7fHzZvhrVr4fvv9bbb06f1nkUnT8LJk9gAjeHOBaguLlCtGlSvDtWq4VajBj9PrEvbkfXZsaM87dqBp6c+HHB6un661s5Ob2U+cyb761arVtVDqF/fcv6ZM7B/vz5Kk4wHLoQobFJMReHQNP2QcsAA/bnJBOHhemE9dQrTiRPc2LePCjExaP/8A/HxekW8qypWAcKBy/hyPKQ+x9GnE9TjHx7mCt6k3/7Iaho0agRt2sC1a/q1rKdOwfnz8Pjj8Ntv+pEq6MV10CC4dQs+/hjWrQNv74K/ZaXg8mX9Wlp7+4LvTwhRekkxFUXDYIAqVfSpWzfSU1PZ/dNPdO/eHbv0dLhwQb8+5u+/9Z9nzsCJExAWhh8R+BFBZ4Itdqk0jURnT1LK++JU3Rd7f19w8IGGntCxAnF25Rk7szwhoeXp364Ca37xIHiHPa++eueS2F27oHFj+PZbaNYsc9hHj+p3wPnnH/38bsZUsaI+eXnBpUt6M/Qvv+iPHRz0fbVuDY89pv8sVy7n9CQk6NuVpmEWU1P13Fy8CAsX6i0HQgidFFNR/BwcoHZtfbpXbKzeNHz8+J3p9GmIjERLT8cp/hpO8dcgPHM7rytgvrrmJtAUquFMfzzQynvgUdWDkFAPLl7yIKSVB3GPeVDlUXcqN/Ag2dGdz9a78/m3HtxQ7sThyvGjTuYj4ZwkJemdqnbu1J9rGjz6KLRtq7die3iAu/ud9Xbs0I+kH34YZs3Sm57zKzpaL9xZnSfO+AKR1bLLl/VfQ/nymd/LihX64yFDIOM2vzEx0Levfp4a9M7cW7boLfx5dfq0fpo9IUHPUfv2+lSjxoN1vvv0af0L2L05Fg8mKaaiZHFz0y+5adHCcn56OkRF6T2PIiLuTJGRcP26fq3N7ckUdR2iozGgcOEWLtyCG//ADeho3h+w4/YE2AFjb08WL2uwJcXGiSSDI4k4Ea+cSLMx4uxuh1sFO9zK25GYbseNODuiou2IvGHP9Xh7kg8bSTlsTwr2XMaeC+iPnbGjI/a0w47Ui3Zsf9aeM5NseaTRBc6dSCbZ5EBCqh0JqXYkmexISrcnTbOjaXMDVatperUxGLh0WWPBQgM//qRRq54db0yzp2lre7CzIybRnnnv27NgkT2eFQ0MGwbDhulH2Js26UeVW7fq54779tUvSWrSBD77DObM0Qst6DcJmjwZOnTQi9+JE3rHbXd3vaNY69bw88+Zz0/n5OhR6NRJb5oHWLVKn0A/hf7UU/Dkk/q+Mwp5hoQEvcUgLQ3q1Mm+af3iRdiwQT+N7+wMLVvqU6NG+heIDErpTf+xsXpP8sqV799ScOWK/gWmVq3s1zl7FiZM0Fs/KlbUh9W8++N8/bo+iFh0tP5eu3bVuxDcSyl9X4cO6ddlV6+ec2x3u3ULwsL0znkeHrnfLi+Sk/XTJjVrQpcull+EzpzRe+uDfuanY8f89VUIC9N7/Ht7660+FSsWTuxFQVO5uTVLGRMbG0u5cuWIiYnBzc0t19ulpqbyU0ZTpvRysVDcuYm5kc6St6JpF3iTFrVuws07k+nGTU7+fpMrp29y61I0jinRuBNNRbub+DpGY38rWi/eDwATGunY6JNmS5rSH6dhiwkDCg0TBkAj/fZzzUavKBkp0ND/RdjY6P/MbGw1Ll2xJSHFFpPBjvLettg52mLvZIutgy1p6K+Tpmyxd7LB1cMWGzsbrsfYsGOnRkqqRjkPA4ENNKKiNK5c1bgSZSDNZCAdG0zoP23sbTA6GrA1GoiOUdxKNmLCgAkDmsGAp48NPr4G7Ow1UlIhLVX/vvXPpTvvX6FZTKCBQQPNQFq6/s70+eDsrBEQAAE1NapUBQ8PDXujvt3f5zR2/a5x5KhGmkmjXTuNXr315Wj6FBsLP242sG27vk5Gfm1sDbw4QqNFS41jxzWWLIEb0Xcqj52dRv36UL6ChoOjhtFRI+oa/HlM42rUnbibNtN46imoW09DM+ivmZaezoGDBwls0JQtW2z5fbfG5QiNG9H6djY2Gi1a6MWsWTOws7/zupcjNA4cgAMH4a+z+peZ5s319bwr3lUWsigRCQkwbRocPqLnr0EgvPii3gFw1WqNr7+GlLQ7r+XmptG+PbRpq9GgAdja6csSEyFkr8aRI+DiquHnp38BuHIVft6s7z/j9whQuZJevG1t9c+jwQCJSRpxcZiHKW3TBrp1A3f3NPbs3UvLceMK9D8nt/VAimkWpJgWvpKaG6X0jkuXL+tNjvb2t2cmJ+v/MRIS9L/4u38mJ+snEDOmlJTMj1NS7kzJyXce37NO8q1U/j6VzPWIZBwM6RgNqRgNqdhpqdihT4b0VJKTFAZM5rJgwIS9ncLFIZ205DRUSir2pGDLg/ElQIjCkGLnQOrNWJydi76YSjOvKNM0TR/S0OLe8ZqmtwdmdVKxkBmBgNRUzt7ni0ZUlN4LefVqPbwJE/TmQU3Tm6j//BNefRVOHU/njVdTef7ZVOxMyfrhZVoaYefTCf87jaaN0nGwTdPbSk0mUIrYGMX5c4o6tfQCjclkbrNLTNSbGRs20nByuh2MyQTp6STFpbJpYxph59KIikjjemQqSfFpODuk4+qYhqN9OjeuppGUkI4tadiQTq0AxYvDFUZ7ZX591O3HtydTWjpJ8ekkxJtIiE8nMT6VmBsXqVfHFyejvm5MtImoyHSuX0tHKbC10Y9WHBz1oxcnJ+7sWymUSZGcpDCZFCpdf25jA3a2ChsbhckEUVcVkRGKiEiIjVakpd05prWzUVTxV1Svpu/n4AFFUtKd5aAfwZd3V9SurfAqbzK/buhpRXiYybxepYcVATX0IyulFPHxEH1TkZaqMKUp/VIwG4W7u6Kcm8JGUyQkKCIuw7WrCqXuvK5BU+YjR3s7ha+PwsVJYW+vsDUoEpPg5g24eVORloZFrBp6nlxcwckREhL1o7uEBP3XnHE0qNCwswVHJw1HJ/1sSkqKnvNq1RS2tvrZlps39f3a2sJDfgo3N9DQ3+OteIiJUcTFgSn9zvGbhsLODlxdFErd/k6aAgZN4eqmn/Wxs9HXTzfpn8fUFPR3ofSfBoM+2dhAeprebJ+YpO8/KdURr1i9ub+oSTEVohTw9NRvuD5yZNbLAwP1DkFgc3tyQO+SpfN/CPwfy3pbN6BBu6yXOQKts1nmAPTtknPcSunnvQ4d0r8QPPssGB1y3sYAON2e4E6rRsPu3dFuf9lwvz3VyHlXZtrteLNjA3jfnhrcnhcTo1/ddfWqfk757h7araLh5Zf1zlpOTjB4sH4f30aNMr9ubeD3z+DLL/UvPLV7WC535e7fVNacgOqA+3X9Uq/Nm/Xe5DEx4OycwsSJNowda4Ojo+V2jrenimn6eUzQi46NDfj4WJ6rdQEqohfFjA51O3bonc1MaUDs7Qm9OXfLFnAK0J9XBqL/hJAQ/TI017vekHZ73y7o3+3++EM/d69p+shnjRrlruOZze193E859Pf6+efpHD8exsZi6nUuzbxZkGbewie5yZ7kJmclOT+nT+vn+O53KVRRSEuDo0dTCQ39hX79OhdZbuLj9YJ68CAcOKAfPb7/vl6MS7LC+txIM68QQhSxrK7uKi62tnqLxD//ZB4DuzC5uOidetq0KdKXKfVK0SXjQgghRMkkxVQIIYQoICmmQgghRAFJMRVCCCEKSDogZSGjg3NsbGyetktNTSUhIYHY2NgS1+vQ2iQ32ZPc5Ezykz3JTfYKKzcZdeB+F75IMc1C3O1xqSpVqmTlSIQQQpQEcXFxlMvhGii5zjQLJpOJy5cv4+rqipaH21jExsZSqVIlLl68mKfrU8sCyU32JDc5k/xkT3KTvcLKjVKKuLg4/Pz8MORwJwQ5Ms2CwWDg4Ycfzvf2bm5u8sHOhuQme5KbnEl+sie5yV5h5CanI9IM0gFJCCGEKCAppkIIIUQBSTEtREajkalTp2K8967GQnKTA8lNziQ/2ZPcZK+4cyMdkIQQQogCkiNTIYQQooCkmAohhBAFJMVUCCGEKCAppkIIIUQBSTEtRB999BFVqlTBwcGB5s2b88cff1g7pCK3c+dOnnzySfz8/NA0jY0bN1osV0oxZcoUfH19cXR0pGPHjpw9e9ZinRs3bjB48GDc3Nxwd3fn+eefJz4+vhjfReGbM2cOTZs2xdXVlYoVK9KrVy9CQ0Mt1klKSmL06NFUqFABFxcX+vTpw5UrVyzWCQ8P54knnsDJyYmKFSvy6quvkpZWtDeDLg6LFy8mMDDQfEF9y5Yt2bx5s3l5Wc7N3d566y00TWPs2LHmeWU5N9OmTUPTNIup9l13aLdqbpQoFF9//bWyt7dXX3zxhTpx4oQaPny4cnd3V1euXLF2aEXqp59+UhMnTlTffvutAtSGDRsslr/11luqXLlyauPGjero0aPqqaeeUlWrVlWJiYnmdbp27aoaNGig9u7dq3bt2qVq1KihgoKCivmdFK4uXbqopUuXquPHj6sjR46o7t27q8qVK6v4+HjzOi+99JKqVKmS2rp1qzpw4IBq0aKFatWqlXl5Wlqaql+/vurYsaM6fPiw+umnn5Snp6d6/fXXrfGWCtX333+vfvzxR3XmzBkVGhqq3njjDWVnZ6eOHz+ulCrbucnwxx9/qCpVqqjAwED18ssvm+eX5dxMnTpV1atXT0VERJina9eumZdbMzdSTAtJs2bN1OjRo83P09PTlZ+fn5ozZ44Voype9xZTk8mkfHx81Lx588zzoqOjldFoVKtXr1ZKKXXy5EkFqP3795vX2bx5s9I0TV26dKnYYi9qV69eVYDasWOHUkrPg52dnVq3bp15nVOnTilAhYSEKKX0LyoGg0FFRkaa11m8eLFyc3NTycnJxfsGioGHh4f67LPPJDdKqbi4OBUQEKCCg4NVu3btzMW0rOdm6tSpqkGDBlkus3ZupJm3EKSkpHDw4EE6duxonmcwGOjYsSMhISFWjMy6zp8/T2RkpEVeypUrR/Pmzc15CQkJwd3dnSZNmpjX6dixIwaDgX379hV7zEUlJiYGgPLlywNw8OBBUlNTLXJTu3ZtKleubJGbRx55BG9vb/M6Xbp0ITY2lhMnThRj9EUrPT2dr7/+mlu3btGyZUvJDTB69GieeOIJixyAfG4Azp49i5+fH9WqVWPw4MGEh4cD1s+NDHRfCKKiokhPT7f4BQF4e3tz+vRpK0VlfZGRkQBZ5iVjWWRkJBUrVrRYbmtrS/ny5c3rlHYmk4mxY8fSunVr6tevD+jv297eHnd3d4t1781NVrnLWFbaHTt2jJYtW5KUlISLiwsbNmygbt26HDlypEzn5uuvv+bQoUPs378/07Ky/rlp3rw5y5Yto1atWkRERDB9+nTatGnD8ePHrZ4bKaZCFLHRo0dz/Phxfv/9d2uHUqLUqlWLI0eOEBMTw/r16xkyZAg7duywdlhWdfHiRV5++WWCg4NxcHCwdjglTrdu3cyPAwMDad68Of7+/qxduxZHR0crRia9eQuFp6cnNjY2mXqNXblyBR8fHytFZX0Z7z2nvPj4+HD16lWL5Wlpady4ceOByN2YMWPYtGkT27Zts7itn4+PDykpKURHR1usf29usspdxrLSzt7enho1atC4cWPmzJlDgwYNeP/998t0bg4ePMjVq1dp1KgRtra22NrasmPHDj744ANsbW3x9vYus7nJiru7OzVr1uSvv/6y+udGimkhsLe3p3HjxmzdutU8z2QysXXrVlq2bGnFyKyratWq+Pj4WOQlNjaWffv2mfPSsmVLoqOjOXjwoHmd3377DZPJRPPmzYs95sKilGLMmDFs2LCB3377japVq1osb9y4MXZ2dha5CQ0NJTw83CI3x44ds/iyERwcjJubG3Xr1i2eN1KMTCYTycnJZTo3HTp04NixYxw5csQ8NWnShMGDB5sfl9XcZCU+Pp6///4bX19f639uCtR9SZh9/fXXymg0qmXLlqmTJ0+qF198Ubm7u1v0GnsQxcXFqcOHD6vDhw8rQL333nvq8OHDKiwsTCmlXxrj7u6uvvvuO/Xnn3+qnj17ZnlpTMOGDdW+ffvU77//rgICAkr9pTEjR45U5cqVU9u3b7foxp+QkGBe56WXXlKVK1dWv/32mzpw4IBq2bKlatmypXl5Rjf+zp07qyNHjqiff/5ZeXl5PRCXOEyYMEHt2LFDnT9/Xv35559qwoQJStM09csvvyilynZu7nV3b16lynZuxo8fr7Zv367Onz+vdu/erTp27Kg8PT3V1atXlVLWzY0U00K0cOFCVblyZWVvb6+aNWum9u7da+2Qity2bdsUkGkaMmSIUkq/PGby5MnK29tbGY1G1aFDBxUaGmqxj+vXr6ugoCDl4uKi3Nzc1LBhw1RcXJwV3k3hySongFq6dKl5ncTERDVq1Cjl4eGhnJycVO/evVVERITFfi5cuKC6deumHB0dlaenpxo/frxKTU0t5ndT+J577jnl7++v7O3tlZeXl+rQoYO5kCpVtnNzr3uLaVnOzYABA5Svr6+yt7dXDz30kBowYID666+/zMutmRu5BZsQQghRQHLOVAghhCggKaZCCCFEAUkxFUIIIQpIiqkQQghRQFJMhRBCiAKSYiqEEEIUkBRTIYQQooCkmAohhBAFJMVUCCGEKCAppkKUAdeuXWPkyJFUrlwZo9GIj48PXbp0Yffu3QBomsbGjRutG6QQpZjcz1SIMqBPnz6kpKSwfPlyqlWrxpUrV9i6dSvXr1+3dmhCPBBkbF4hHnDR0dF4eHiwfft22rVrl2l5lSpVCAsLMz/39/fnwoULAHz33XdMnz6dkydP4ufnx5AhQ5g4cSK2tvr3cE3TWLRoEd9//z3bt2/H19eXuXPn0rdv32J5b0KUFNLMK8QDzsXFBRcXFzZu3EhycnKm5fv37wdg6dKlREREmJ/v2rWLZ599lpdffpmTJ0/y8ccfs2zZMmbNmmWx/eTJk+nTpw9Hjx5l8ODBDBw4kFOnThX9GxOiBJEjUyHKgG+++Ybhw4eTmJhIo0aNaNeuHQMHDiQwMBDQjzA3bNhAr169zNt07NiRDh068Prrr5vnrVy5ktdee43Lly+bt3vppZdYvHixeZ0WLVrQqFEjFi1aVDxvTogSQI5MhSgD+vTpw+XLl/n+++/p2rUr27dvp1GjRixbtizbbY4ePcqMGTPMR7YuLi4MHz6ciIgIEhISzOu1bNnSYruWLVvKkakoc6QDkhBlhIODA506daJTp05MnjyZF154galTpzJ06NAs14+Pj2f69Ok8/fTTWe5LCHGHHJkKUUbVrVuXW7duAWBnZ0d6errF8kaNGhEaGkqNGjUyTQbDnX8de/futdhu79691KlTp+jfgBAliByZCvGAu379Ov369eO5554jMDAQV1dXDhw4wNy5c+nZsyeg9+jdunUrrVu3xmg04uHhwZQpU+jRoweVK1emb9++GAwGjh49yvHjx3nzzTfN+1+3bh1NmjThscce46uvvuKPP/7g888/t9bbFcI6lBDigZaUlKQmTJigGjVqpMqVK6ecnJxUrVq11KRJk1RCQoJSSqnvv/9e1ahRQ9na2ip/f3/ztj///LNq1aqVcnR0VG5ubqpZs2bqk08+MS8H1EcffaQ6deqkjEajqlKlilqzZk1xv0UhrE568woh8i2rXsBClEVyzlQIIYQoICmmQgghRAFJByQhRL7JWSIhdHJkKoQQQhSQFFMhhBCigKSYCiGEEAUkxVQIIYQoICmmQgghRAFJMRVCCCEKSIqpEEIIUUBSTIUQQogC+n+uxhTS57d2VwAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"code","source":["from huggingface_hub import notebook_login\n","\n","notebook_login()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":145,"referenced_widgets":["34c172acb007469c866bde9a6b513eed","020e7e0ad6b94c7fae87537cf0a59194","6ec0dc17174a459baf05558a00087991","20360c20c3c446b88a7824a31efcce45","188a5994aa324b50a237fe34874eebf8","ec549299b4b3463f8f1ff8099d2c5e5d","1bf99a4a6752483e9df979ca7baded63","9c1c94f663bc4aa4af431201405c2589","5a4fbe441c4c409eb010503a99cc351b","bc2a3d9f6c6944288552d3841bb565c8","b8ff8e18029647e184302d28435bf9c2","3306687072ea4f88a01a008eaa20442c","c4880b4e13c747699189b0005a543894","875581823fd34361a683c6157ff9d6da","397416e30b4d42c490d59b3ee15e270c","e42274073a2b4927a48d99283b99799c","81969f592c204aa280e431913a62ac8d","e5033e038cbd4fcaa819240be28bd811","db57c3f1aeab4a659783231ddf5acff5","dc15b6536af9470c84d50002a9772558","c0e797fd2b3246eeac96ef13a78b2080","1d1b06a793784375b701b6f09a93308a","2d0a14cf177d4fe38950ffb7397082dd","7d0f35f65d2b4d06a67bfd48014c95cd","e86de004fc1d45dea60f7d3169ee7a7e","d151000117094de7880d6979d7ea8143","58bec82f302943ebb309469ab388efd3","a559bc513aed48edb155c137de8552db","1a1039f218514d818be8e3398c7216b0","beed924539ff40ae8d77d414f218403e","f5a25831f8e14e669618bc8255f9c4e1","b572b63f9824473d94c3adb429233ede"]},"id":"dI9BuDXp65zX","executionInfo":{"status":"ok","timestamp":1719137255730,"user_tz":-240,"elapsed":465,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"}},"outputId":"8476ed8c-be5b-44c4-d4dd-1fa5b12d98e7"},"execution_count":11,"outputs":[{"output_type":"display_data","data":{"text/plain":["VBox(children=(HTML(value='
=2.0.0 in /usr/local/lib/python3.10/dist-packages (from evaluate) (2.19.2)\n","Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from evaluate) (1.25.2)\n","Requirement already satisfied: dill in /usr/local/lib/python3.10/dist-packages (from evaluate) (0.3.8)\n","Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from evaluate) (2.0.3)\n","Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from evaluate) (2.32.3)\n","Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from evaluate) (4.66.4)\n","Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from evaluate) (3.4.1)\n","Requirement already satisfied: multiprocess in /usr/local/lib/python3.10/dist-packages (from evaluate) (0.70.16)\n","Requirement already satisfied: fsspec[http]>=2021.05.0 in /usr/local/lib/python3.10/dist-packages (from evaluate) (2023.6.0)\n","Requirement already satisfied: huggingface-hub>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from evaluate) (0.23.2)\n","Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from evaluate) (24.0)\n","Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->evaluate) (3.14.0)\n","Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->evaluate) (14.0.2)\n","Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->evaluate) (0.6)\n","Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->evaluate) (3.9.5)\n","Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->evaluate) (6.0.1)\n","Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.7.0->evaluate) (4.12.1)\n","Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->evaluate) (3.3.2)\n","Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->evaluate) (3.7)\n","Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->evaluate) (2.0.7)\n","Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->evaluate) (2024.6.2)\n","Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->evaluate) (2.8.2)\n","Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->evaluate) (2023.4)\n","Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas->evaluate) (2024.1)\n","Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.3.1)\n","Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (23.2.0)\n","Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.4.1)\n","Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (6.0.5)\n","Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.9.4)\n","Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (4.0.3)\n","Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->evaluate) (1.16.0)\n","Installing collected packages: evaluate\n","Successfully installed evaluate-0.4.2\n"]}]},{"cell_type":"code","source":["!pip install rouge_score"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"yjrFG8jCBBVQ","executionInfo":{"status":"ok","timestamp":1717829417211,"user_tz":-240,"elapsed":6801,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"}},"outputId":"0d0b134b-9102-4ddd-864f-e3b429e42ab0"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Collecting rouge_score\n"," Downloading rouge_score-0.1.2.tar.gz (17 kB)\n"," Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n","Requirement already satisfied: absl-py in /usr/local/lib/python3.10/dist-packages (from rouge_score) (1.4.0)\n","Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from rouge_score) (3.8.1)\n","Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from rouge_score) (1.25.2)\n","Requirement already satisfied: six>=1.14.0 in /usr/local/lib/python3.10/dist-packages (from rouge_score) (1.16.0)\n","Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->rouge_score) (8.1.7)\n","Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk->rouge_score) (1.4.2)\n","Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.10/dist-packages (from nltk->rouge_score) (2024.5.15)\n","Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from nltk->rouge_score) (4.66.4)\n","Building wheels for collected packages: rouge_score\n"," Building wheel for rouge_score (setup.py) ... \u001b[?25l\u001b[?25hdone\n"," Created wheel for rouge_score: filename=rouge_score-0.1.2-py3-none-any.whl size=24933 sha256=68f68e8de6d1379edd13539d414698a91cd28a38bd1c1e432853b5e3aaa19b21\n"," Stored in directory: /root/.cache/pip/wheels/5f/dd/89/461065a73be61a532ff8599a28e9beef17985c9e9c31e541b4\n","Successfully built rouge_score\n","Installing collected packages: rouge_score\n","Successfully installed rouge_score-0.1.2\n"]}]},{"cell_type":"code","source":["from evaluate import load\n","# Load the ROUGE metric\n","import evaluate\n","rouge = evaluate.load('rouge')"],"metadata":{"id":"km7nb5aDAvJr"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["candidates = [generated_summary]\n","\n","references = [[target_text]\n"," ]\n","results = rouge.compute(predictions=candidates, references=references)\n","print(results)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"kENtYiU9BLZw","executionInfo":{"status":"ok","timestamp":1717829782660,"user_tz":-240,"elapsed":714,"user":{"displayName":"Aditi Paretkar","userId":"17466297872366651006"}},"outputId":"afbb4460-3fac-42d8-8e0f-8a2e48d7f0cb"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["{'rouge1': 0.42, 'rouge2': 0.10738255033557047, 'rougeL': 0.2, 'rougeLsum': 0.2}\n"]}]}],"metadata":{"colab":{"machine_shape":"hm","provenance":[],"gpuType":"L4"},"kernelspec":{"display_name":"Python 3","name":"python3"},"language_info":{"name":"python"},"widgets":{"application/vnd.jupyter.widget-state+json":{"6d9df6e75cc945b88e3670a2df24d8af":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_a04d04955caa4caf965a059f6192389a","IPY_MODEL_5bdbf21cfbe541de99e233de68439f3d","IPY_MODEL_ab02d78def4a41d49f58bd815ad5ae8d"],"layout":"IPY_MODEL_ca342530bf844aa2b921efa544e9a004"}},"a04d04955caa4caf965a059f6192389a":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_7878b7c67f2e43058ec0683a963ecee1","placeholder":"​","style":"IPY_MODEL_e1620d174e594e2cb2a463e928270544","value":"config.json: 100%"}},"5bdbf21cfbe541de99e233de68439f3d":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_f3aabe2f8734421c8c58cec6cd0557d0","max":1557,"min":0,"orientation":"horizontal","style":"IPY_MODEL_341ad549367643d297436bbfcec08b8f","value":1557}},"ab02d78def4a41d49f58bd815ad5ae8d":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_2fbf1856493c4a339ef594710097ecb0","placeholder":"​","style":"IPY_MODEL_9275631f53fd4c4abd56cf0a247f9385","value":" 1.56k/1.56k [00:00<00:00, 138kB/s]"}},"ca342530bf844aa2b921efa544e9a004":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"7878b7c67f2e43058ec0683a963ecee1":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e1620d174e594e2cb2a463e928270544":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"f3aabe2f8734421c8c58cec6cd0557d0":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"341ad549367643d297436bbfcec08b8f":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"2fbf1856493c4a339ef594710097ecb0":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"9275631f53fd4c4abd56cf0a247f9385":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"8101be0ef0424652b6daf9f0337205d5":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_ac816d0e13064a82a07f904cc0f26ce2","IPY_MODEL_76a9e95fba724e998c9024b3bae1e215","IPY_MODEL_6723b8fd18f5447d91a6ad611a0a6391"],"layout":"IPY_MODEL_2cb0ce693f074dfe97e7e56b75172e06"}},"ac816d0e13064a82a07f904cc0f26ce2":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_915ce37b0fc94c6094686df40a417508","placeholder":"​","style":"IPY_MODEL_78b97565cc784814ac24099a3c4d111f","value":"model.safetensors: 100%"}},"76a9e95fba724e998c9024b3bae1e215":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_3920e3334a484857844259723e7ca281","max":1089213696,"min":0,"orientation":"horizontal","style":"IPY_MODEL_e27e865e89094a0aa640961efcc7fb12","value":1089213696}},"6723b8fd18f5447d91a6ad611a0a6391":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_d6e575c8024d42afbbc45b2146e24638","placeholder":"​","style":"IPY_MODEL_5015dc2b660949f7b3d1046262e6ce2c","value":" 1.09G/1.09G [00:13<00:00, 72.9MB/s]"}},"2cb0ce693f074dfe97e7e56b75172e06":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"915ce37b0fc94c6094686df40a417508":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"78b97565cc784814ac24099a3c4d111f":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"3920e3334a484857844259723e7ca281":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e27e865e89094a0aa640961efcc7fb12":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"d6e575c8024d42afbbc45b2146e24638":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"5015dc2b660949f7b3d1046262e6ce2c":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"31f398df033b452a918698c514263296":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_f2ad187ee5634ce092ff8094521652d4","IPY_MODEL_7c82dd1f39ad4af0b4054e9f92606761","IPY_MODEL_da16495232d54810a86333f00e91ac3e"],"layout":"IPY_MODEL_ef523024e79b44ffa5c24c96ffa7487c"}},"f2ad187ee5634ce092ff8094521652d4":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_6ef654e8f9984abf8c0f7f290ac69519","placeholder":"​","style":"IPY_MODEL_92357dbf94af4e4b9c76000128385d2b","value":"generation_config.json: 100%"}},"7c82dd1f39ad4af0b4054e9f92606761":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_8994ace135d941f6a05958f01d0d63f7","max":257,"min":0,"orientation":"horizontal","style":"IPY_MODEL_2932ea5871f847cb8460ca4b77be02a9","value":257}},"da16495232d54810a86333f00e91ac3e":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_b3206ee8122e427fb91ce21a115e1fd5","placeholder":"​","style":"IPY_MODEL_b6ac6f84891240ce9e1a30447e926112","value":" 257/257 [00:00<00:00, 23.4kB/s]"}},"ef523024e79b44ffa5c24c96ffa7487c":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"6ef654e8f9984abf8c0f7f290ac69519":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"92357dbf94af4e4b9c76000128385d2b":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"8994ace135d941f6a05958f01d0d63f7":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"2932ea5871f847cb8460ca4b77be02a9":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"b3206ee8122e427fb91ce21a115e1fd5":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"b6ac6f84891240ce9e1a30447e926112":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"6f35936a5f50433aa5266b1fb6c4a6ac":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_00cec180d3094481b79579770ec3a3fd","IPY_MODEL_11efa16b9fdc46d3b52778f950ae3ebf","IPY_MODEL_32ba6593fdc54e3cb1e622584cc90b0d"],"layout":"IPY_MODEL_2c4c0af2ed6d464cbac51d74d5a789aa"}},"00cec180d3094481b79579770ec3a3fd":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_446e5f2e675f44348e85f5c8a525756f","placeholder":"​","style":"IPY_MODEL_7fe170fb99294bf9be1d09ab2811318c","value":"tokenizer_config.json: 100%"}},"11efa16b9fdc46d3b52778f950ae3ebf":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_9c9f22511b7e43d095bba6ede95a4cf1","max":20120,"min":0,"orientation":"horizontal","style":"IPY_MODEL_427caf50a97e470292987d0085736306","value":20120}},"32ba6593fdc54e3cb1e622584cc90b0d":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_57639774d281474a9d4ad413079167d1","placeholder":"​","style":"IPY_MODEL_b56d6d762d2c4a36a036e0a773ee7fc2","value":" 20.1k/20.1k [00:00<00:00, 1.69MB/s]"}},"2c4c0af2ed6d464cbac51d74d5a789aa":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"446e5f2e675f44348e85f5c8a525756f":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"7fe170fb99294bf9be1d09ab2811318c":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"9c9f22511b7e43d095bba6ede95a4cf1":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"427caf50a97e470292987d0085736306":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"57639774d281474a9d4ad413079167d1":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"b56d6d762d2c4a36a036e0a773ee7fc2":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"0b1c7a5607d64fa68a8fac947bd0cb28":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_a544b1df86c842de8f31c00d0b6471fb","IPY_MODEL_4efc2646ab41417f92166354114856e4","IPY_MODEL_8ff3f2bd04a2449795034a23c8cb50d6"],"layout":"IPY_MODEL_79270e467a8b47749b04f3b957c8750b"}},"a544b1df86c842de8f31c00d0b6471fb":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_56d2ac36529840b59c39bacf166d8efe","placeholder":"​","style":"IPY_MODEL_865eb57e09f74f1f9c739b881e91296f","value":"spiece.model: 100%"}},"4efc2646ab41417f92166354114856e4":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_58c4ec945c0b4df7a0904d13f6c6750a","max":1912529,"min":0,"orientation":"horizontal","style":"IPY_MODEL_b9ed8ede2cde44f2ac21df131c9b86bf","value":1912529}},"8ff3f2bd04a2449795034a23c8cb50d6":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_01321c03292f42d698b8d0ae377fa2c6","placeholder":"​","style":"IPY_MODEL_9b7bd149c7484642ba3e93163b746a0f","value":" 1.91M/1.91M [00:00<00:00, 5.89MB/s]"}},"79270e467a8b47749b04f3b957c8750b":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"56d2ac36529840b59c39bacf166d8efe":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"865eb57e09f74f1f9c739b881e91296f":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"58c4ec945c0b4df7a0904d13f6c6750a":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"b9ed8ede2cde44f2ac21df131c9b86bf":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"01321c03292f42d698b8d0ae377fa2c6":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"9b7bd149c7484642ba3e93163b746a0f":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"5460cf1fc2924cb897702e638bb4f78b":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_d2a29755d4e847c092b97615db82d20a","IPY_MODEL_2c2cd99a67664160a30d7d3735fb95d1","IPY_MODEL_317b1465a75d46e1820f9bdfe4d496f0"],"layout":"IPY_MODEL_df5c7401d78a4af0a8c313b1ab083627"}},"d2a29755d4e847c092b97615db82d20a":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_4fced2e7e8cb444eb047a170984f725e","placeholder":"​","style":"IPY_MODEL_26f631b767d24915a63e7d88bd5bfae6","value":"tokenizer.json: 100%"}},"2c2cd99a67664160a30d7d3735fb95d1":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_4fcbe29db8334fb3880bec4b4b712442","max":6597509,"min":0,"orientation":"horizontal","style":"IPY_MODEL_016484c685ed4cc7a13579f69b3711e6","value":6597509}},"317b1465a75d46e1820f9bdfe4d496f0":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_d922a9aaf4bc4a10a7a489a0b610140b","placeholder":"​","style":"IPY_MODEL_f60a7025a1de49a390e68312c8f25cf1","value":" 6.60M/6.60M [00:00<00:00, 22.9MB/s]"}},"df5c7401d78a4af0a8c313b1ab083627":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"4fced2e7e8cb444eb047a170984f725e":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"26f631b767d24915a63e7d88bd5bfae6":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"4fcbe29db8334fb3880bec4b4b712442":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"016484c685ed4cc7a13579f69b3711e6":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"d922a9aaf4bc4a10a7a489a0b610140b":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"f60a7025a1de49a390e68312c8f25cf1":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"96d26ccdf21643cda7e9ea0979b3c791":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_c45bbd8238ba46f99043faaa73b14123","IPY_MODEL_083ceec3766e47139b13773c642c74e0","IPY_MODEL_ccf9c6dbfd234064a68b04ad4afef992"],"layout":"IPY_MODEL_97f5385cbec149bd954afcdf32e7c4ca"}},"c45bbd8238ba46f99043faaa73b14123":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_7849d1ae8d4b467d9999876e12ea8385","placeholder":"​","style":"IPY_MODEL_62abfaf4554744f483878e3d57369c1e","value":"special_tokens_map.json: 100%"}},"083ceec3766e47139b13773c642c74e0":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_50238af525d34a1da6e45e876d319635","max":2222,"min":0,"orientation":"horizontal","style":"IPY_MODEL_f683e14971db47ebb5632308cf9e88f5","value":2222}},"ccf9c6dbfd234064a68b04ad4afef992":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_694515c4315c4bcb85677dbb7c99f013","placeholder":"​","style":"IPY_MODEL_217bacd2c4a2490faa09a71bc2a196cd","value":" 2.22k/2.22k [00:00<00:00, 158kB/s]"}},"97f5385cbec149bd954afcdf32e7c4ca":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"7849d1ae8d4b467d9999876e12ea8385":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"62abfaf4554744f483878e3d57369c1e":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"50238af525d34a1da6e45e876d319635":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"f683e14971db47ebb5632308cf9e88f5":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"694515c4315c4bcb85677dbb7c99f013":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"217bacd2c4a2490faa09a71bc2a196cd":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"0724934679264e3e8010be8ccc795030":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_53e066181c1448c9b8e7f0e4ff613e5f","IPY_MODEL_67496c08aa1c40a19d15411e97a92b25","IPY_MODEL_e85cab47171741e385bfe5adf9d9397a"],"layout":"IPY_MODEL_227c2c0c1db04ddd9b7f9bd8f4791eff"}},"53e066181c1448c9b8e7f0e4ff613e5f":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_5aa5c9c4f6434e1d85dfdac98d56efba","placeholder":"​","style":"IPY_MODEL_bca9e38e4bcb45e4bff0fb56112a5624","value":"tokenizer_config.json: 100%"}},"67496c08aa1c40a19d15411e97a92b25":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_7b505d0782cd45eebec23d2bd04f1080","max":2018,"min":0,"orientation":"horizontal","style":"IPY_MODEL_9a812ab866324e12bed9151e67fc1ca1","value":2018}},"e85cab47171741e385bfe5adf9d9397a":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_1d1cc555e93745a5b081ddd41bd1a50a","placeholder":"​","style":"IPY_MODEL_d48de3f52d704c89b1c4ba2af96a8f7a","value":" 2.02k/2.02k [00:00<00:00, 165kB/s]"}},"227c2c0c1db04ddd9b7f9bd8f4791eff":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"5aa5c9c4f6434e1d85dfdac98d56efba":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"bca9e38e4bcb45e4bff0fb56112a5624":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"7b505d0782cd45eebec23d2bd04f1080":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"9a812ab866324e12bed9151e67fc1ca1":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"1d1cc555e93745a5b081ddd41bd1a50a":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"d48de3f52d704c89b1c4ba2af96a8f7a":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"fadcf58b21774c92a5aa7c9af7a0b7fb":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_932444b5463f4ac18f3c069d381e3442","IPY_MODEL_267d20c2f29d4fbe871cf857d09d1eb7","IPY_MODEL_84f27090bb714cb79e3dfc8d75a71d0d"],"layout":"IPY_MODEL_82c7dc612a4d449f8338ff2631379fbf"}},"932444b5463f4ac18f3c069d381e3442":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_f8d543952faf4bf392ce23d801fd2f73","placeholder":"​","style":"IPY_MODEL_9a187d32d4ac41d9bd16ab139cb94e4b","value":"spiece.model: 100%"}},"267d20c2f29d4fbe871cf857d09d1eb7":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_bf689e6a929e4c55bc61cd920770a716","max":1912529,"min":0,"orientation":"horizontal","style":"IPY_MODEL_a209095d1fd14a8d9baa4483de45646e","value":1912529}},"84f27090bb714cb79e3dfc8d75a71d0d":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_05dffeb366ca4863bdb4a6f17b8ff0bb","placeholder":"​","style":"IPY_MODEL_991930b26c474c4ea9d08be5edca63a2","value":" 1.91M/1.91M [00:00<00:00, 11.2MB/s]"}},"82c7dc612a4d449f8338ff2631379fbf":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"f8d543952faf4bf392ce23d801fd2f73":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"9a187d32d4ac41d9bd16ab139cb94e4b":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"bf689e6a929e4c55bc61cd920770a716":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"a209095d1fd14a8d9baa4483de45646e":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"05dffeb366ca4863bdb4a6f17b8ff0bb":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"991930b26c474c4ea9d08be5edca63a2":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"ec44b1975df548aaae34f80e1518c217":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_3f9cc8e3cd22467ea6c922ffe6130a62","IPY_MODEL_19f45ad6717c490dadf2358cfa24ae22","IPY_MODEL_22f9541dea474f3a92b6d14b0eef1cb7"],"layout":"IPY_MODEL_8380017b80ea4fb0aa1d30867d552b94"}},"3f9cc8e3cd22467ea6c922ffe6130a62":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_3a39802ef335474ba52780a0ddc83c76","placeholder":"​","style":"IPY_MODEL_5cfd1bb35e41431bad905276a58328e9","value":"tokenizer.json: 100%"}},"19f45ad6717c490dadf2358cfa24ae22":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_b5a83f59601e4ee19d3c4bbe7748e182","max":6603131,"min":0,"orientation":"horizontal","style":"IPY_MODEL_61acf2ed58134e2491b83ffc7886a505","value":6603131}},"22f9541dea474f3a92b6d14b0eef1cb7":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_55c4ff50ebf74d22aba0e68b39c3f2e0","placeholder":"​","style":"IPY_MODEL_1f5ee5de50ce4481b0f8b1149e27b7f2","value":" 6.60M/6.60M [00:00<00:00, 16.5MB/s]"}},"8380017b80ea4fb0aa1d30867d552b94":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"3a39802ef335474ba52780a0ddc83c76":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"5cfd1bb35e41431bad905276a58328e9":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"b5a83f59601e4ee19d3c4bbe7748e182":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"61acf2ed58134e2491b83ffc7886a505":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"55c4ff50ebf74d22aba0e68b39c3f2e0":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"1f5ee5de50ce4481b0f8b1149e27b7f2":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"cc07e281cc8a42709c2ad1aac6b416e0":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_08231d9028174807bacc3d8fd5de3f82","IPY_MODEL_e6446322b3f04478b2a9de6dc58c4f47","IPY_MODEL_d52497ddff864eb28aaff662bd54002b"],"layout":"IPY_MODEL_4cb8db99145c4d3cbbc3a617d131c69c"}},"08231d9028174807bacc3d8fd5de3f82":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_0114b24ce9d24ab0b41f5f8aa4e20c93","placeholder":"​","style":"IPY_MODEL_5d2d8632f0184c8bbb01d94e35a3eaf6","value":"special_tokens_map.json: 100%"}},"e6446322b3f04478b2a9de6dc58c4f47":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_7831cc069fee4609bb41177b97216632","max":1766,"min":0,"orientation":"horizontal","style":"IPY_MODEL_8c8efad765284779abbaefda207f085f","value":1766}},"d52497ddff864eb28aaff662bd54002b":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_2ca69fc7299b4ae4883613e856597548","placeholder":"​","style":"IPY_MODEL_c3f4c5f423e24cd186979b0c65fd07a8","value":" 1.77k/1.77k [00:00<00:00, 166kB/s]"}},"4cb8db99145c4d3cbbc3a617d131c69c":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"0114b24ce9d24ab0b41f5f8aa4e20c93":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"5d2d8632f0184c8bbb01d94e35a3eaf6":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"7831cc069fee4609bb41177b97216632":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"8c8efad765284779abbaefda207f085f":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"2ca69fc7299b4ae4883613e856597548":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"c3f4c5f423e24cd186979b0c65fd07a8":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"bc4fe7ee2b5b43cb9806a5e345e7285d":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_9f6ecda2094f4588a8569df644c91a89","IPY_MODEL_b890182b6bf344029d8e916a56a3604b","IPY_MODEL_fc132f9d441644d2b31d3125944184f5"],"layout":"IPY_MODEL_749c90df22f641ea94b08ccca80a9a60"}},"9f6ecda2094f4588a8569df644c91a89":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_c4f001ab5920463eb95850759a667c09","placeholder":"​","style":"IPY_MODEL_45d3bf7e724945168376ad09a3ad468b","value":"config.json: 100%"}},"b890182b6bf344029d8e916a56a3604b":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_ef933615cf22409fbfa9b4ff8e528495","max":1488,"min":0,"orientation":"horizontal","style":"IPY_MODEL_4a51ef134ce94f8eaaf55efb980a4a79","value":1488}},"fc132f9d441644d2b31d3125944184f5":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_a3fa2e44c70b453e81b7d41d0a90b72b","placeholder":"​","style":"IPY_MODEL_136d326f66764cae807a928dad91888c","value":" 1.49k/1.49k [00:00<00:00, 118kB/s]"}},"749c90df22f641ea94b08ccca80a9a60":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"c4f001ab5920463eb95850759a667c09":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"45d3bf7e724945168376ad09a3ad468b":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"ef933615cf22409fbfa9b4ff8e528495":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"4a51ef134ce94f8eaaf55efb980a4a79":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"a3fa2e44c70b453e81b7d41d0a90b72b":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"136d326f66764cae807a928dad91888c":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"d9ef01d5e8944e8b81daf832e5db05ee":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_275394b887704cf99c3703a90123a96d","IPY_MODEL_fec8429ae83b4c5488e9c6a44ef37bf3","IPY_MODEL_17af93915a8e4fc69c7df0e623a8126d"],"layout":"IPY_MODEL_211286057ee343298d8736f98cd194b7"}},"275394b887704cf99c3703a90123a96d":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_c6aa6c387bb241fc8ed3db89704f8375","placeholder":"​","style":"IPY_MODEL_7f18d3e94fb2489f86a617502fb5ac72","value":"pytorch_model.bin: 100%"}},"fec8429ae83b4c5488e9c6a44ef37bf3":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_961c9b49cfac47ad9efbb6076820f1b8","max":1089293365,"min":0,"orientation":"horizontal","style":"IPY_MODEL_0c0eab169f874ca3b627f756f299bc6e","value":1089293365}},"17af93915a8e4fc69c7df0e623a8126d":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_a50824d70ef045e68b3744750593ca8d","placeholder":"​","style":"IPY_MODEL_e069d1f627bd43fe878c3054decf4870","value":" 1.09G/1.09G [00:24<00:00, 41.7MB/s]"}},"211286057ee343298d8736f98cd194b7":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"c6aa6c387bb241fc8ed3db89704f8375":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"7f18d3e94fb2489f86a617502fb5ac72":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"961c9b49cfac47ad9efbb6076820f1b8":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"0c0eab169f874ca3b627f756f299bc6e":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"a50824d70ef045e68b3744750593ca8d":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e069d1f627bd43fe878c3054decf4870":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"c9961a9ae43f40998362a5fc90d9666b":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_d72ad9f448864321ac48db1350d068d9","IPY_MODEL_a4561186fe394b6c9ee5f48ea2f04bb6","IPY_MODEL_f5a7b403c09248b181091ba98c5fbd43"],"layout":"IPY_MODEL_7047a6d81fa9422187120cbb2944de14"}},"d72ad9f448864321ac48db1350d068d9":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_658a3275c6704bf08932c943564aecfc","placeholder":"​","style":"IPY_MODEL_6779fe9c110f49898cb11753dad25d43","value":"generation_config.json: 100%"}},"a4561186fe394b6c9ee5f48ea2f04bb6":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_1fbd8d0d5e0049059b84631c519c0f36","max":262,"min":0,"orientation":"horizontal","style":"IPY_MODEL_2a223a68fa22403083e782cdc8a11f37","value":262}},"f5a7b403c09248b181091ba98c5fbd43":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_186131f281bc4aa6be0c59478b0edf4f","placeholder":"​","style":"IPY_MODEL_7c26b1295b2c4bd2a3cc7af4d4f337a0","value":" 262/262 [00:00<00:00, 23.6kB/s]"}},"7047a6d81fa9422187120cbb2944de14":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"658a3275c6704bf08932c943564aecfc":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"6779fe9c110f49898cb11753dad25d43":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"1fbd8d0d5e0049059b84631c519c0f36":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"2a223a68fa22403083e782cdc8a11f37":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"186131f281bc4aa6be0c59478b0edf4f":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"7c26b1295b2c4bd2a3cc7af4d4f337a0":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"34c172acb007469c866bde9a6b513eed":{"model_module":"@jupyter-widgets/controls","model_name":"VBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"VBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"VBoxView","box_style":"","children":["IPY_MODEL_c0e797fd2b3246eeac96ef13a78b2080","IPY_MODEL_1d1b06a793784375b701b6f09a93308a","IPY_MODEL_2d0a14cf177d4fe38950ffb7397082dd","IPY_MODEL_7d0f35f65d2b4d06a67bfd48014c95cd"],"layout":"IPY_MODEL_1bf99a4a6752483e9df979ca7baded63"}},"020e7e0ad6b94c7fae87537cf0a59194":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_9c1c94f663bc4aa4af431201405c2589","placeholder":"​","style":"IPY_MODEL_5a4fbe441c4c409eb010503a99cc351b","value":"

Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file.
"}},"6ec0dc17174a459baf05558a00087991":{"model_module":"@jupyter-widgets/controls","model_name":"PasswordModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"PasswordModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"PasswordView","continuous_update":true,"description":"Token:","description_tooltip":null,"disabled":false,"layout":"IPY_MODEL_bc2a3d9f6c6944288552d3841bb565c8","placeholder":"​","style":"IPY_MODEL_b8ff8e18029647e184302d28435bf9c2","value":""}},"20360c20c3c446b88a7824a31efcce45":{"model_module":"@jupyter-widgets/controls","model_name":"CheckboxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"CheckboxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"CheckboxView","description":"Add token as git credential?","description_tooltip":null,"disabled":false,"indent":true,"layout":"IPY_MODEL_3306687072ea4f88a01a008eaa20442c","style":"IPY_MODEL_c4880b4e13c747699189b0005a543894","value":true}},"188a5994aa324b50a237fe34874eebf8":{"model_module":"@jupyter-widgets/controls","model_name":"ButtonModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ButtonModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ButtonView","button_style":"","description":"Login","disabled":false,"icon":"","layout":"IPY_MODEL_875581823fd34361a683c6157ff9d6da","style":"IPY_MODEL_397416e30b4d42c490d59b3ee15e270c","tooltip":""}},"ec549299b4b3463f8f1ff8099d2c5e5d":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_e42274073a2b4927a48d99283b99799c","placeholder":"​","style":"IPY_MODEL_81969f592c204aa280e431913a62ac8d","value":"\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks.
"}},"1bf99a4a6752483e9df979ca7baded63":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":"center","align_self":null,"border":null,"bottom":null,"display":"flex","flex":null,"flex_flow":"column","grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":"50%"}},"9c1c94f663bc4aa4af431201405c2589":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"5a4fbe441c4c409eb010503a99cc351b":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"bc2a3d9f6c6944288552d3841bb565c8":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"b8ff8e18029647e184302d28435bf9c2":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"3306687072ea4f88a01a008eaa20442c":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"c4880b4e13c747699189b0005a543894":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"875581823fd34361a683c6157ff9d6da":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"397416e30b4d42c490d59b3ee15e270c":{"model_module":"@jupyter-widgets/controls","model_name":"ButtonStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ButtonStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","button_color":null,"font_weight":""}},"e42274073a2b4927a48d99283b99799c":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"81969f592c204aa280e431913a62ac8d":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"e5033e038cbd4fcaa819240be28bd811":{"model_module":"@jupyter-widgets/controls","model_name":"LabelModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"LabelModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"LabelView","description":"","description_tooltip":null,"layout":"IPY_MODEL_db57c3f1aeab4a659783231ddf5acff5","placeholder":"​","style":"IPY_MODEL_dc15b6536af9470c84d50002a9772558","value":"Connecting..."}},"db57c3f1aeab4a659783231ddf5acff5":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"dc15b6536af9470c84d50002a9772558":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"c0e797fd2b3246eeac96ef13a78b2080":{"model_module":"@jupyter-widgets/controls","model_name":"LabelModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"LabelModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"LabelView","description":"","description_tooltip":null,"layout":"IPY_MODEL_e86de004fc1d45dea60f7d3169ee7a7e","placeholder":"​","style":"IPY_MODEL_d151000117094de7880d6979d7ea8143","value":"Token is valid (permission: write)."}},"1d1b06a793784375b701b6f09a93308a":{"model_module":"@jupyter-widgets/controls","model_name":"LabelModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"LabelModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"LabelView","description":"","description_tooltip":null,"layout":"IPY_MODEL_58bec82f302943ebb309469ab388efd3","placeholder":"​","style":"IPY_MODEL_a559bc513aed48edb155c137de8552db","value":"Your token has been saved in your configured git credential helpers (store)."}},"2d0a14cf177d4fe38950ffb7397082dd":{"model_module":"@jupyter-widgets/controls","model_name":"LabelModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"LabelModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"LabelView","description":"","description_tooltip":null,"layout":"IPY_MODEL_1a1039f218514d818be8e3398c7216b0","placeholder":"​","style":"IPY_MODEL_beed924539ff40ae8d77d414f218403e","value":"Your token has been saved to /root/.cache/huggingface/token"}},"7d0f35f65d2b4d06a67bfd48014c95cd":{"model_module":"@jupyter-widgets/controls","model_name":"LabelModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"LabelModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"LabelView","description":"","description_tooltip":null,"layout":"IPY_MODEL_f5a25831f8e14e669618bc8255f9c4e1","placeholder":"​","style":"IPY_MODEL_b572b63f9824473d94c3adb429233ede","value":"Login successful"}},"e86de004fc1d45dea60f7d3169ee7a7e":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"d151000117094de7880d6979d7ea8143":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"58bec82f302943ebb309469ab388efd3":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"a559bc513aed48edb155c137de8552db":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"1a1039f218514d818be8e3398c7216b0":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"beed924539ff40ae8d77d414f218403e":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"f5a25831f8e14e669618bc8255f9c4e1":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"b572b63f9824473d94c3adb429233ede":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}}}},"accelerator":"GPU"},"nbformat":4,"nbformat_minor":0}