prajwalJumde
commited on
Commit
·
a1292c7
1
Parent(s):
d71bd32
am-infoweb/MRR-NER-08-09-Layoutlmv3
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: MRR-NER-08-09-Layoutlmv3
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# MRR-NER-08-09-Layoutlmv3
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0175
|
24 |
+
- Precision: 0.8367
|
25 |
+
- Recall: 0.9111
|
26 |
+
- F1: 0.8723
|
27 |
+
- Accuracy: 0.9960
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 1e-05
|
47 |
+
- train_batch_size: 2
|
48 |
+
- eval_batch_size: 2
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- training_steps: 1000
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 8.33 | 100 | 0.2585 | 0.1667 | 0.0222 | 0.0392 | 0.9607 |
|
59 |
+
| No log | 16.67 | 200 | 0.1281 | 0.4783 | 0.2444 | 0.3235 | 0.9727 |
|
60 |
+
| No log | 25.0 | 300 | 0.0821 | 0.3696 | 0.3778 | 0.3736 | 0.9767 |
|
61 |
+
| No log | 33.33 | 400 | 0.0493 | 0.5111 | 0.5111 | 0.5111 | 0.9813 |
|
62 |
+
| 0.2244 | 41.67 | 500 | 0.0330 | 0.625 | 0.7778 | 0.6931 | 0.9913 |
|
63 |
+
| 0.2244 | 50.0 | 600 | 0.0272 | 0.6909 | 0.8444 | 0.7600 | 0.9927 |
|
64 |
+
| 0.2244 | 58.33 | 700 | 0.0218 | 0.7843 | 0.8889 | 0.8333 | 0.9953 |
|
65 |
+
| 0.2244 | 66.67 | 800 | 0.0190 | 0.7547 | 0.8889 | 0.8163 | 0.9947 |
|
66 |
+
| 0.2244 | 75.0 | 900 | 0.0158 | 0.8936 | 0.9333 | 0.9130 | 0.9973 |
|
67 |
+
| 0.038 | 83.33 | 1000 | 0.0175 | 0.8367 | 0.9111 | 0.8723 | 0.9960 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.34.0.dev0
|
73 |
+
- Pytorch 2.0.1+cu118
|
74 |
+
- Datasets 2.14.5
|
75 |
+
- Tokenizers 0.13.3
|