prajwalJumde commited on
Commit
a1292c7
·
1 Parent(s): d71bd32

am-infoweb/MRR-NER-08-09-Layoutlmv3

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: microsoft/layoutlmv3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: MRR-NER-08-09-Layoutlmv3
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # MRR-NER-08-09-Layoutlmv3
20
+
21
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0175
24
+ - Precision: 0.8367
25
+ - Recall: 0.9111
26
+ - F1: 0.8723
27
+ - Accuracy: 0.9960
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 1e-05
47
+ - train_batch_size: 2
48
+ - eval_batch_size: 2
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - training_steps: 1000
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 8.33 | 100 | 0.2585 | 0.1667 | 0.0222 | 0.0392 | 0.9607 |
59
+ | No log | 16.67 | 200 | 0.1281 | 0.4783 | 0.2444 | 0.3235 | 0.9727 |
60
+ | No log | 25.0 | 300 | 0.0821 | 0.3696 | 0.3778 | 0.3736 | 0.9767 |
61
+ | No log | 33.33 | 400 | 0.0493 | 0.5111 | 0.5111 | 0.5111 | 0.9813 |
62
+ | 0.2244 | 41.67 | 500 | 0.0330 | 0.625 | 0.7778 | 0.6931 | 0.9913 |
63
+ | 0.2244 | 50.0 | 600 | 0.0272 | 0.6909 | 0.8444 | 0.7600 | 0.9927 |
64
+ | 0.2244 | 58.33 | 700 | 0.0218 | 0.7843 | 0.8889 | 0.8333 | 0.9953 |
65
+ | 0.2244 | 66.67 | 800 | 0.0190 | 0.7547 | 0.8889 | 0.8163 | 0.9947 |
66
+ | 0.2244 | 75.0 | 900 | 0.0158 | 0.8936 | 0.9333 | 0.9130 | 0.9973 |
67
+ | 0.038 | 83.33 | 1000 | 0.0175 | 0.8367 | 0.9111 | 0.8723 | 0.9960 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.34.0.dev0
73
+ - Pytorch 2.0.1+cu118
74
+ - Datasets 2.14.5
75
+ - Tokenizers 0.13.3