amagzari commited on
Commit
9c2ce3b
1 Parent(s): 3759f8f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - samsum
7
+ metrics:
8
+ - rouge
9
+ model-index:
10
+ - name: bart-large-xsum-finetuned-samsum-v2
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: samsum
17
+ type: samsum
18
+ config: samsum
19
+ split: train
20
+ args: samsum
21
+ metrics:
22
+ - name: Rouge1
23
+ type: rouge
24
+ value: 54.1988
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # bart-large-xsum-finetuned-samsum-v2
31
+
32
+ This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the samsum dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.4078
35
+ - Rouge1: 54.1988
36
+ - Rouge2: 29.3478
37
+ - Rougel: 44.6308
38
+ - Rougelsum: 49.8443
39
+ - Gen Len: 29.0538
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 2e-05
59
+ - train_batch_size: 4
60
+ - eval_batch_size: 4
61
+ - seed: 42
62
+ - gradient_accumulation_steps: 2
63
+ - total_train_batch_size: 8
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 1
67
+ - mixed_precision_training: Native AMP
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
72
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
73
+ | 1.3515 | 1.0 | 1841 | 1.4078 | 54.1988 | 29.3478 | 44.6308 | 49.8443 | 29.0538 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.25.1
79
+ - Pytorch 1.13.0+cu116
80
+ - Datasets 2.7.1
81
+ - Tokenizers 0.13.2