|
import json |
|
from collections import defaultdict |
|
from pathlib import Path |
|
from tqdm import tqdm |
|
import numpy as np |
|
import sys |
|
import pathlib |
|
|
|
CURRENT_DIR = pathlib.Path(__file__).parent |
|
sys.path.append(str(CURRENT_DIR)) |
|
|
|
|
|
def make_dirs(dir="./datasets/coco"): |
|
|
|
dir = Path(dir) |
|
for p in [dir / "labels"]: |
|
p.mkdir(parents=True, exist_ok=True) |
|
return dir |
|
|
|
|
|
def coco91_to_coco80_class(): |
|
|
|
x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None, |
|
None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, |
|
51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, |
|
None, 73, 74, 75, 76, 77, 78, 79, None] |
|
return x |
|
|
|
|
|
def convert_coco_json( |
|
json_dir="../coco/annotations/", use_segments=False, cls91to80=False |
|
): |
|
save_dir = make_dirs() |
|
coco80 = coco91_to_coco80_class() |
|
|
|
|
|
for json_file in sorted(Path(json_dir).resolve().glob("*.json")): |
|
if not str(json_file).endswith("instances_val2017.json"): |
|
continue |
|
fn = ( |
|
Path(save_dir) / "labels" / json_file.stem.replace("instances_", "") |
|
) |
|
fn.mkdir() |
|
with open(json_file) as f: |
|
data = json.load(f) |
|
|
|
|
|
images = {"%g" % x["id"]: x for x in data["images"]} |
|
|
|
imgToAnns = defaultdict(list) |
|
for ann in data["annotations"]: |
|
imgToAnns[ann["image_id"]].append(ann) |
|
|
|
txt_file = open(Path(save_dir / "val2017").with_suffix(".txt"), "a") |
|
|
|
for img_id, anns in tqdm(imgToAnns.items(), desc=f"Annotations {json_file}"): |
|
img = images["%g" % img_id] |
|
h, w, f = img["height"], img["width"], img["file_name"] |
|
bboxes = [] |
|
segments = [] |
|
|
|
txt_file.write( |
|
"./images/" + "/".join(img["coco_url"].split("/")[-2:]) + "\n" |
|
) |
|
for ann in anns: |
|
if ann["iscrowd"]: |
|
continue |
|
|
|
box = np.array(ann["bbox"], dtype=np.float64) |
|
box[:2] += box[2:] / 2 |
|
box[[0, 2]] /= w |
|
box[[1, 3]] /= h |
|
if box[2] <= 0 or box[3] <= 0: |
|
continue |
|
|
|
cls = ( |
|
coco80[ann["category_id"] - 1] |
|
if cls91to80 |
|
else ann["category_id"] - 1 |
|
) |
|
box = [cls] + box.tolist() |
|
if box not in bboxes: |
|
bboxes.append(box) |
|
|
|
if use_segments: |
|
if len(ann["segmentation"]) > 1: |
|
s = merge_multi_segment(ann["segmentation"]) |
|
s = ( |
|
(np.concatenate(s, axis=0) / np.array([w, h])) |
|
.reshape(-1) |
|
.tolist() |
|
) |
|
else: |
|
s = [ |
|
j for i in ann["segmentation"] for j in i |
|
] |
|
s = ( |
|
(np.array(s).reshape(-1, 2) / np.array([w, h])) |
|
.reshape(-1) |
|
.tolist() |
|
) |
|
s = [cls] + s |
|
if s not in segments: |
|
segments.append(s) |
|
|
|
|
|
with open((fn / f).with_suffix(".txt"), "a") as file: |
|
for i in range(len(bboxes)): |
|
line = ( |
|
*(segments[i] if use_segments else bboxes[i]), |
|
) |
|
file.write(("%g " * len(line)).rstrip() % line + "\n") |
|
txt_file.close() |
|
|
|
|
|
def min_index(arr1, arr2): |
|
"""Find a pair of indexes with the shortest distance. |
|
Args: |
|
arr1: (N, 2). |
|
arr2: (M, 2). |
|
Return: |
|
a pair of indexes(tuple). |
|
""" |
|
dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1) |
|
return np.unravel_index(np.argmin(dis, axis=None), dis.shape) |
|
|
|
|
|
def merge_multi_segment(segments): |
|
"""Merge multi segments to one list. |
|
Find the coordinates with min distance between each segment, |
|
then connect these coordinates with one thin line to merge all |
|
segments into one. |
|
|
|
Args: |
|
segments(List(List)): original segmentations in coco's json file. |
|
like [segmentation1, segmentation2,...], |
|
each segmentation is a list of coordinates. |
|
""" |
|
s = [] |
|
segments = [np.array(i).reshape(-1, 2) for i in segments] |
|
idx_list = [[] for _ in range(len(segments))] |
|
|
|
|
|
for i in range(1, len(segments)): |
|
idx1, idx2 = min_index(segments[i - 1], segments[i]) |
|
idx_list[i - 1].append(idx1) |
|
idx_list[i].append(idx2) |
|
|
|
|
|
for k in range(2): |
|
|
|
if k == 0: |
|
for i, idx in enumerate(idx_list): |
|
|
|
|
|
if len(idx) == 2 and idx[0] > idx[1]: |
|
idx = idx[::-1] |
|
segments[i] = segments[i][::-1, :] |
|
|
|
segments[i] = np.roll(segments[i], -idx[0], axis=0) |
|
segments[i] = np.concatenate([segments[i], segments[i][:1]]) |
|
|
|
if i in [0, len(idx_list) - 1]: |
|
s.append(segments[i]) |
|
else: |
|
idx = [0, idx[1] - idx[0]] |
|
s.append(segments[i][idx[0] : idx[1] + 1]) |
|
|
|
else: |
|
for i in range(len(idx_list) - 1, -1, -1): |
|
if i not in [0, len(idx_list) - 1]: |
|
idx = idx_list[i] |
|
nidx = abs(idx[1] - idx[0]) |
|
s.append(segments[i][nidx:]) |
|
return s |
|
|
|
|
|
if __name__ == "__main__": |
|
convert_coco_json( |
|
"./datasets/coco/annotations", |
|
use_segments=True, |
|
cls91to80=True, |
|
) |