import json from collections import defaultdict from pathlib import Path from tqdm import tqdm import numpy as np import sys import pathlib CURRENT_DIR = pathlib.Path(__file__).parent sys.path.append(str(CURRENT_DIR)) def make_dirs(dir="./datasets/coco"): # Create folders dir = Path(dir) for p in [dir / "labels"]: p.mkdir(parents=True, exist_ok=True) # make dir return dir def coco91_to_coco80_class(): # converts 80-index (val2014) to 91-index (paper) # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None, None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, None, 73, 74, 75, 76, 77, 78, 79, None] return x def convert_coco_json( json_dir="../coco/annotations/", use_segments=False, cls91to80=False ): save_dir = make_dirs() # output directory coco80 = coco91_to_coco80_class() # Import json for json_file in sorted(Path(json_dir).resolve().glob("*.json")): if not str(json_file).endswith("instances_val2017.json"): continue fn = ( Path(save_dir) / "labels" / json_file.stem.replace("instances_", "") ) # folder name fn.mkdir() with open(json_file) as f: data = json.load(f) # Create image dict images = {"%g" % x["id"]: x for x in data["images"]} # Create image-annotations dict imgToAnns = defaultdict(list) for ann in data["annotations"]: imgToAnns[ann["image_id"]].append(ann) txt_file = open(Path(save_dir / "val2017").with_suffix(".txt"), "a") # Write labels file for img_id, anns in tqdm(imgToAnns.items(), desc=f"Annotations {json_file}"): img = images["%g" % img_id] h, w, f = img["height"], img["width"], img["file_name"] bboxes = [] segments = [] txt_file.write( "./images/" + "/".join(img["coco_url"].split("/")[-2:]) + "\n" ) for ann in anns: if ann["iscrowd"]: continue # The COCO box format is [top left x, top left y, width, height] box = np.array(ann["bbox"], dtype=np.float64) box[:2] += box[2:] / 2 # xy top-left corner to center box[[0, 2]] /= w # normalize x box[[1, 3]] /= h # normalize y if box[2] <= 0 or box[3] <= 0: # if w <= 0 and h <= 0 continue cls = ( coco80[ann["category_id"] - 1] if cls91to80 else ann["category_id"] - 1 ) # class box = [cls] + box.tolist() if box not in bboxes: bboxes.append(box) # Segments if use_segments: if len(ann["segmentation"]) > 1: s = merge_multi_segment(ann["segmentation"]) s = ( (np.concatenate(s, axis=0) / np.array([w, h])) .reshape(-1) .tolist() ) else: s = [ j for i in ann["segmentation"] for j in i ] # all segments concatenated s = ( (np.array(s).reshape(-1, 2) / np.array([w, h])) .reshape(-1) .tolist() ) s = [cls] + s if s not in segments: segments.append(s) # Write with open((fn / f).with_suffix(".txt"), "a") as file: for i in range(len(bboxes)): line = ( *(segments[i] if use_segments else bboxes[i]), ) # cls, box or segments file.write(("%g " * len(line)).rstrip() % line + "\n") txt_file.close() def min_index(arr1, arr2): """Find a pair of indexes with the shortest distance. Args: arr1: (N, 2). arr2: (M, 2). Return: a pair of indexes(tuple). """ dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1) return np.unravel_index(np.argmin(dis, axis=None), dis.shape) def merge_multi_segment(segments): """Merge multi segments to one list. Find the coordinates with min distance between each segment, then connect these coordinates with one thin line to merge all segments into one. Args: segments(List(List)): original segmentations in coco's json file. like [segmentation1, segmentation2,...], each segmentation is a list of coordinates. """ s = [] segments = [np.array(i).reshape(-1, 2) for i in segments] idx_list = [[] for _ in range(len(segments))] # record the indexes with min distance between each segment for i in range(1, len(segments)): idx1, idx2 = min_index(segments[i - 1], segments[i]) idx_list[i - 1].append(idx1) idx_list[i].append(idx2) # use two round to connect all the segments for k in range(2): # forward connection if k == 0: for i, idx in enumerate(idx_list): # middle segments have two indexes # reverse the index of middle segments if len(idx) == 2 and idx[0] > idx[1]: idx = idx[::-1] segments[i] = segments[i][::-1, :] segments[i] = np.roll(segments[i], -idx[0], axis=0) segments[i] = np.concatenate([segments[i], segments[i][:1]]) # deal with the first segment and the last one if i in [0, len(idx_list) - 1]: s.append(segments[i]) else: idx = [0, idx[1] - idx[0]] s.append(segments[i][idx[0] : idx[1] + 1]) else: for i in range(len(idx_list) - 1, -1, -1): if i not in [0, len(idx_list) - 1]: idx = idx_list[i] nidx = abs(idx[1] - idx[0]) s.append(segments[i][nidx:]) return s if __name__ == "__main__": convert_coco_json( "./datasets/coco/annotations", # directory with *.json use_segments=True, cls91to80=True, )