File size: 27,990 Bytes
1f99b24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
import numpy as np
import time

import torch
import torch.nn as nn
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd

try:
    import _raymarching_face as _backend
except ImportError:
    from .backend import _backend

# ----------------------------------------
# utils
# ----------------------------------------

class _near_far_from_aabb(Function):
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32)
    def forward(ctx, rays_o, rays_d, aabb, min_near=0.2):
        ''' near_far_from_aabb, CUDA implementation
        Calculate rays' intersection time (near and far) with aabb
        Args:
            rays_o: float, [N, 3]
            rays_d: float, [N, 3]
            aabb: float, [6], (xmin, ymin, zmin, xmax, ymax, zmax)
            min_near: float, scalar
        Returns:
            nears: float, [N]
            fars: float, [N]
        '''
        if not rays_o.is_cuda: rays_o = rays_o.cuda()
        if not rays_d.is_cuda: rays_d = rays_d.cuda()

        rays_o = rays_o.contiguous().view(-1, 3)
        rays_d = rays_d.contiguous().view(-1, 3)

        N = rays_o.shape[0] # num rays

        nears = torch.empty(N, dtype=rays_o.dtype, device=rays_o.device)
        fars = torch.empty(N, dtype=rays_o.dtype, device=rays_o.device)

        _backend.near_far_from_aabb(rays_o, rays_d, aabb, N, min_near, nears, fars)

        return nears, fars

near_far_from_aabb = _near_far_from_aabb.apply


class _sph_from_ray(Function):
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32)
    def forward(ctx, rays_o, rays_d, radius):
        ''' sph_from_ray, CUDA implementation
        get spherical coordinate on the background sphere from rays.
        Assume rays_o are inside the Sphere(radius).
        Args:
            rays_o: [N, 3]
            rays_d: [N, 3]
            radius: scalar, float
        Return:
            coords: [N, 2], in [-1, 1], theta and phi on a sphere. (further-surface)
        '''
        if not rays_o.is_cuda: rays_o = rays_o.cuda()
        if not rays_d.is_cuda: rays_d = rays_d.cuda()

        rays_o = rays_o.contiguous().view(-1, 3)
        rays_d = rays_d.contiguous().view(-1, 3)

        N = rays_o.shape[0] # num rays

        coords = torch.empty(N, 2, dtype=rays_o.dtype, device=rays_o.device)

        _backend.sph_from_ray(rays_o, rays_d, radius, N, coords)

        return coords

sph_from_ray = _sph_from_ray.apply


class _morton3D(Function):
    @staticmethod
    def forward(ctx, coords):
        ''' morton3D, CUDA implementation
        Args:
            coords: [N, 3], int32, in [0, 128) (for some reason there is no uint32 tensor in torch...) 
            TODO: check if the coord range is valid! (current 128 is safe)
        Returns:
            indices: [N], int32, in [0, 128^3)
            
        '''
        if not coords.is_cuda: coords = coords.cuda()
        
        N = coords.shape[0]

        indices = torch.empty(N, dtype=torch.int32, device=coords.device)
        
        _backend.morton3D(coords.int(), N, indices)

        return indices

morton3D = _morton3D.apply

class _morton3D_invert(Function):
    @staticmethod
    def forward(ctx, indices):
        ''' morton3D_invert, CUDA implementation
        Args:
            indices: [N], int32, in [0, 128^3)
        Returns:
            coords: [N, 3], int32, in [0, 128)
            
        '''
        if not indices.is_cuda: indices = indices.cuda()
        
        N = indices.shape[0]

        coords = torch.empty(N, 3, dtype=torch.int32, device=indices.device)
        
        _backend.morton3D_invert(indices.int(), N, coords)

        return coords

morton3D_invert = _morton3D_invert.apply


class _packbits(Function):
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32)
    def forward(ctx, grid, thresh, bitfield=None):
        ''' packbits, CUDA implementation
        Pack up the density grid into a bit field to accelerate ray marching.
        Args:
            grid: float, [C, H * H * H], assume H % 2 == 0
            thresh: float, threshold
        Returns:
            bitfield: uint8, [C, H * H * H / 8]
        '''
        if not grid.is_cuda: grid = grid.cuda()
        grid = grid.contiguous()

        C = grid.shape[0]
        H3 = grid.shape[1]
        N = C * H3 // 8

        if bitfield is None:
            bitfield = torch.empty(N, dtype=torch.uint8, device=grid.device)

        _backend.packbits(grid, N, thresh, bitfield)

        return bitfield

packbits = _packbits.apply


class _morton3D_dilation(Function):
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32)
    def forward(ctx, grid):
        ''' max pooling with morton coord, CUDA implementation
        or maybe call it dilation... we don't support adjust kernel size.
        Args:
            grid: float, [C, H * H * H], assume H % 2 == 0
        Returns:
            grid_dilate: float, [C, H * H * H], assume H % 2 == 0bitfield: uint8, [C, H * H * H / 8]
        '''
        if not grid.is_cuda: grid = grid.cuda()
        grid = grid.contiguous()

        C = grid.shape[0]
        H3 = grid.shape[1]
        H = int(np.cbrt(H3))
        grid_dilation = torch.empty_like(grid)

        _backend.morton3D_dilation(grid, C, H, grid_dilation)

        return grid_dilation

morton3D_dilation = _morton3D_dilation.apply

# ----------------------------------------
# train functions
# ----------------------------------------

class _march_rays_train(Function):
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32)
    def forward(ctx, rays_o, rays_d, bound, density_bitfield, C, H, nears, fars, step_counter=None, mean_count=-1, perturb=False, align=-1, force_all_rays=False, dt_gamma=0, max_steps=1024):
        ''' march rays to generate points (forward only)
        Args:
            rays_o/d: float, [N, 3]
            bound: float, scalar
            density_bitfield: uint8: [CHHH // 8]
            C: int
            H: int
            nears/fars: float, [N]
            step_counter: int32, (2), used to count the actual number of generated points.
            mean_count: int32, estimated mean steps to accelerate training. (but will randomly drop rays if the actual point count exceeded this threshold.)
            perturb: bool
            align: int, pad output so its size is dividable by align, set to -1 to disable.
            force_all_rays: bool, ignore step_counter and mean_count, always calculate all rays. Useful if rendering the whole image, instead of some rays.
            dt_gamma: float, called cone_angle in instant-ngp, exponentially accelerate ray marching if > 0. (very significant effect, but generally lead to worse performance)
            max_steps: int, max number of sampled points along each ray, also affect min_stepsize.
        Returns:
            xyzs: float, [M, 3], all generated points' coords. (all rays concated, need to use `rays` to extract points belonging to each ray)
            dirs: float, [M, 3], all generated points' view dirs.
            deltas: float, [M, 2], first is delta_t, second is rays_t
            rays: int32, [N, 3], all rays' (index, point_offset, point_count), e.g., xyzs[rays[i, 1]:rays[i, 1] + rays[i, 2]] --> points belonging to rays[i, 0]
        '''

        if not rays_o.is_cuda: rays_o = rays_o.cuda()
        if not rays_d.is_cuda: rays_d = rays_d.cuda()
        if not density_bitfield.is_cuda: density_bitfield = density_bitfield.cuda()
        
        rays_o = rays_o.contiguous().view(-1, 3)
        rays_d = rays_d.contiguous().view(-1, 3)
        density_bitfield = density_bitfield.contiguous()

        N = rays_o.shape[0] # num rays
        M = N * max_steps # init max points number in total

        # running average based on previous epoch (mimic `measured_batch_size_before_compaction` in instant-ngp)
        # It estimate the max points number to enable faster training, but will lead to random ignored rays if underestimated.
        if not force_all_rays and mean_count > 0:
            if align > 0:
                mean_count += align - mean_count % align
            M = mean_count
        
        xyzs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device)
        dirs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device)
        deltas = torch.zeros(M, 2, dtype=rays_o.dtype, device=rays_o.device)
        rays = torch.empty(N, 3, dtype=torch.int32, device=rays_o.device) # id, offset, num_steps

        if step_counter is None:
            step_counter = torch.zeros(2, dtype=torch.int32, device=rays_o.device) # point counter, ray counter
        
        if perturb:
            noises = torch.rand(N, dtype=rays_o.dtype, device=rays_o.device)
        else:
            noises = torch.zeros(N, dtype=rays_o.dtype, device=rays_o.device)
        
        _backend.march_rays_train(rays_o, rays_d, density_bitfield, bound, dt_gamma, max_steps, N, C, H, M, nears, fars, xyzs, dirs, deltas, rays, step_counter, noises) # m is the actually used points number

        #print(step_counter, M)

        # only used at the first (few) epochs.
        if force_all_rays or mean_count <= 0:
            m = step_counter[0].item() # D2H copy
            if align > 0:
                m += align - m % align
            xyzs = xyzs[:m]
            dirs = dirs[:m]
            deltas = deltas[:m]

            torch.cuda.empty_cache()
        
        ctx.save_for_backward(rays, deltas)

        return xyzs, dirs, deltas, rays

    # to support optimizing camera poses.
    @staticmethod
    @custom_bwd
    def backward(ctx, grad_xyzs, grad_dirs, grad_deltas, grad_rays):
        # grad_xyzs/dirs: [M, 3]
        
        rays, deltas = ctx.saved_tensors

        N = rays.shape[0]
        M = grad_xyzs.shape[0]

        grad_rays_o = torch.zeros(N, 3, device=rays.device)
        grad_rays_d = torch.zeros(N, 3, device=rays.device)
        
        _backend.march_rays_train_backward(grad_xyzs, grad_dirs, rays, deltas, N, M, grad_rays_o, grad_rays_d)
        
        return grad_rays_o, grad_rays_d, None, None, None, None, None, None, None, None, None, None, None, None, None

march_rays_train = _march_rays_train.apply


class _composite_rays_train(Function):
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32)
    def forward(ctx, sigmas, rgbs, ambient, deltas, rays, T_thresh=1e-4):
        ''' composite rays' rgbs, according to the ray marching formula.
        Args:
            rgbs: float, [M, 3]
            sigmas: float, [M,]
            ambient: float, [M,] (after summing up the last dimension)
            deltas: float, [M, 2]
            rays: int32, [N, 3]
        Returns:
            weights_sum: float, [N,], the alpha channel
            depth: float, [N, ], the Depth
            image: float, [N, 3], the RGB channel (after multiplying alpha!)
        '''
        
        sigmas = sigmas.contiguous()
        rgbs = rgbs.contiguous()
        ambient = ambient.contiguous()

        M = sigmas.shape[0]
        N = rays.shape[0]

        weights_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
        ambient_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
        depth = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
        image = torch.empty(N, 3, dtype=sigmas.dtype, device=sigmas.device)

        _backend.composite_rays_train_forward(sigmas, rgbs, ambient, deltas, rays, M, N, T_thresh, weights_sum, ambient_sum, depth, image)

        ctx.save_for_backward(sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, depth, image)
        ctx.dims = [M, N, T_thresh]

        return weights_sum, ambient_sum, depth, image
    
    @staticmethod
    @custom_bwd
    def backward(ctx, grad_weights_sum, grad_ambient_sum, grad_depth, grad_image):

        # NOTE: grad_depth is not used now! It won't be propagated to sigmas.

        grad_weights_sum = grad_weights_sum.contiguous()
        grad_ambient_sum = grad_ambient_sum.contiguous()
        grad_image = grad_image.contiguous()

        sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, depth, image = ctx.saved_tensors
        M, N, T_thresh = ctx.dims
   
        grad_sigmas = torch.zeros_like(sigmas)
        grad_rgbs = torch.zeros_like(rgbs)
        grad_ambient = torch.zeros_like(ambient)

        _backend.composite_rays_train_backward(grad_weights_sum, grad_ambient_sum, grad_image, sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, image, M, N, T_thresh, grad_sigmas, grad_rgbs, grad_ambient)

        return grad_sigmas, grad_rgbs, grad_ambient, None, None, None


composite_rays_train = _composite_rays_train.apply

# ----------------------------------------
# infer functions
# ----------------------------------------

class _march_rays(Function):
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32)
    def forward(ctx, n_alive, n_step, rays_alive, rays_t, rays_o, rays_d, bound, density_bitfield, C, H, near, far, align=-1, perturb=False, dt_gamma=0, max_steps=1024):
        ''' march rays to generate points (forward only, for inference)
        Args:
            n_alive: int, number of alive rays
            n_step: int, how many steps we march
            rays_alive: int, [N], the alive rays' IDs in N (N >= n_alive, but we only use first n_alive)
            rays_t: float, [N], the alive rays' time, we only use the first n_alive.
            rays_o/d: float, [N, 3]
            bound: float, scalar
            density_bitfield: uint8: [CHHH // 8]
            C: int
            H: int
            nears/fars: float, [N]
            align: int, pad output so its size is dividable by align, set to -1 to disable.
            perturb: bool/int, int > 0 is used as the random seed.
            dt_gamma: float, called cone_angle in instant-ngp, exponentially accelerate ray marching if > 0. (very significant effect, but generally lead to worse performance)
            max_steps: int, max number of sampled points along each ray, also affect min_stepsize.
        Returns:
            xyzs: float, [n_alive * n_step, 3], all generated points' coords
            dirs: float, [n_alive * n_step, 3], all generated points' view dirs.
            deltas: float, [n_alive * n_step, 2], all generated points' deltas (here we record two deltas, the first is for RGB, the second for depth).
        '''
        
        if not rays_o.is_cuda: rays_o = rays_o.cuda()
        if not rays_d.is_cuda: rays_d = rays_d.cuda()
        
        rays_o = rays_o.contiguous().view(-1, 3)
        rays_d = rays_d.contiguous().view(-1, 3)

        M = n_alive * n_step

        if align > 0:
            M += align - (M % align)
        
        xyzs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device)
        dirs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device)
        deltas = torch.zeros(M, 2, dtype=rays_o.dtype, device=rays_o.device) # 2 vals, one for rgb, one for depth

        if perturb:
            # torch.manual_seed(perturb) # test_gui uses spp index as seed
            noises = torch.rand(n_alive, dtype=rays_o.dtype, device=rays_o.device)
        else:
            noises = torch.zeros(n_alive, dtype=rays_o.dtype, device=rays_o.device)

        _backend.march_rays(n_alive, n_step, rays_alive, rays_t, rays_o, rays_d, bound, dt_gamma, max_steps, C, H, density_bitfield, near, far, xyzs, dirs, deltas, noises)

        return xyzs, dirs, deltas

march_rays = _march_rays.apply


class _composite_rays(Function):
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32) # need to cast sigmas & rgbs to float
    def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, weights_sum, depth, image, T_thresh=1e-2):
        ''' composite rays' rgbs, according to the ray marching formula. (for inference)
        Args:
            n_alive: int, number of alive rays
            n_step: int, how many steps we march
            rays_alive: int, [n_alive], the alive rays' IDs in N (N >= n_alive)
            rays_t: float, [N], the alive rays' time
            sigmas: float, [n_alive * n_step,]
            rgbs: float, [n_alive * n_step, 3]
            deltas: float, [n_alive * n_step, 2], all generated points' deltas (here we record two deltas, the first is for RGB, the second for depth).
        In-place Outputs:
            weights_sum: float, [N,], the alpha channel
            depth: float, [N,], the depth value
            image: float, [N, 3], the RGB channel (after multiplying alpha!)
        '''
        _backend.composite_rays(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, weights_sum, depth, image)
        return tuple()


composite_rays = _composite_rays.apply


class _composite_rays_ambient(Function):
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32) # need to cast sigmas & rgbs to float
    def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, weights_sum, depth, image, ambient_sum, T_thresh=1e-2):
        _backend.composite_rays_ambient(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, weights_sum, depth, image, ambient_sum)
        return tuple()


composite_rays_ambient = _composite_rays_ambient.apply





# custom

class _composite_rays_train_sigma(Function):
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32)
    def forward(ctx, sigmas, rgbs, ambient, deltas, rays, T_thresh=1e-4):
        ''' composite rays' rgbs, according to the ray marching formula.
        Args:
            rgbs: float, [M, 3]
            sigmas: float, [M,]
            ambient: float, [M,] (after summing up the last dimension)
            deltas: float, [M, 2]
            rays: int32, [N, 3]
        Returns:
            weights_sum: float, [N,], the alpha channel
            depth: float, [N, ], the Depth
            image: float, [N, 3], the RGB channel (after multiplying alpha!)
        '''
        
        sigmas = sigmas.contiguous()
        rgbs = rgbs.contiguous()
        ambient = ambient.contiguous()

        M = sigmas.shape[0]
        N = rays.shape[0]

        weights_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
        ambient_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
        depth = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
        image = torch.empty(N, 3, dtype=sigmas.dtype, device=sigmas.device)

        _backend.composite_rays_train_sigma_forward(sigmas, rgbs, ambient, deltas, rays, M, N, T_thresh, weights_sum, ambient_sum, depth, image)

        ctx.save_for_backward(sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, depth, image)
        ctx.dims = [M, N, T_thresh]

        return weights_sum, ambient_sum, depth, image
    
    @staticmethod
    @custom_bwd
    def backward(ctx, grad_weights_sum, grad_ambient_sum, grad_depth, grad_image):

        # NOTE: grad_depth is not used now! It won't be propagated to sigmas.

        grad_weights_sum = grad_weights_sum.contiguous()
        grad_ambient_sum = grad_ambient_sum.contiguous()
        grad_image = grad_image.contiguous()

        sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, depth, image = ctx.saved_tensors
        M, N, T_thresh = ctx.dims
   
        grad_sigmas = torch.zeros_like(sigmas)
        grad_rgbs = torch.zeros_like(rgbs)
        grad_ambient = torch.zeros_like(ambient)

        _backend.composite_rays_train_sigma_backward(grad_weights_sum, grad_ambient_sum, grad_image, sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, image, M, N, T_thresh, grad_sigmas, grad_rgbs, grad_ambient)

        return grad_sigmas, grad_rgbs, grad_ambient, None, None, None


composite_rays_train_sigma = _composite_rays_train_sigma.apply


class _composite_rays_ambient_sigma(Function):
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32) # need to cast sigmas & rgbs to float
    def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, weights_sum, depth, image, ambient_sum, T_thresh=1e-2):
        _backend.composite_rays_ambient_sigma(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, weights_sum, depth, image, ambient_sum)
        return tuple()


composite_rays_ambient_sigma = _composite_rays_ambient_sigma.apply



# uncertainty
class _composite_rays_train_uncertainty(Function):
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32)
    def forward(ctx, sigmas, rgbs, ambient, uncertainty, deltas, rays, T_thresh=1e-4):
        ''' composite rays' rgbs, according to the ray marching formula.
        Args:
            rgbs: float, [M, 3]
            sigmas: float, [M,]
            ambient: float, [M,] (after summing up the last dimension)
            deltas: float, [M, 2]
            rays: int32, [N, 3]
        Returns:
            weights_sum: float, [N,], the alpha channel
            depth: float, [N, ], the Depth
            image: float, [N, 3], the RGB channel (after multiplying alpha!)
        '''
        
        sigmas = sigmas.contiguous()
        rgbs = rgbs.contiguous()
        ambient = ambient.contiguous()
        uncertainty = uncertainty.contiguous()

        M = sigmas.shape[0]
        N = rays.shape[0]

        weights_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
        ambient_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
        uncertainty_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
        depth = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
        image = torch.empty(N, 3, dtype=sigmas.dtype, device=sigmas.device)

        _backend.composite_rays_train_uncertainty_forward(sigmas, rgbs, ambient, uncertainty, deltas, rays, M, N, T_thresh, weights_sum, ambient_sum, uncertainty_sum, depth, image)

        ctx.save_for_backward(sigmas, rgbs, ambient, uncertainty, deltas, rays, weights_sum, ambient_sum, uncertainty_sum, depth, image)
        ctx.dims = [M, N, T_thresh]

        return weights_sum, ambient_sum, uncertainty_sum, depth, image
    
    @staticmethod
    @custom_bwd
    def backward(ctx, grad_weights_sum, grad_ambient_sum, grad_uncertainty_sum, grad_depth, grad_image):

        # NOTE: grad_depth is not used now! It won't be propagated to sigmas.

        grad_weights_sum = grad_weights_sum.contiguous()
        grad_ambient_sum = grad_ambient_sum.contiguous()
        grad_uncertainty_sum = grad_uncertainty_sum.contiguous()
        grad_image = grad_image.contiguous()

        sigmas, rgbs, ambient, uncertainty, deltas, rays, weights_sum, ambient_sum, uncertainty_sum, depth, image = ctx.saved_tensors
        M, N, T_thresh = ctx.dims
   
        grad_sigmas = torch.zeros_like(sigmas)
        grad_rgbs = torch.zeros_like(rgbs)
        grad_ambient = torch.zeros_like(ambient)
        grad_uncertainty = torch.zeros_like(uncertainty)

        _backend.composite_rays_train_uncertainty_backward(grad_weights_sum, grad_ambient_sum, grad_uncertainty_sum, grad_image, sigmas, rgbs, ambient, uncertainty, deltas, rays, weights_sum, ambient_sum, uncertainty_sum, image, M, N, T_thresh, grad_sigmas, grad_rgbs, grad_ambient, grad_uncertainty)

        return grad_sigmas, grad_rgbs, grad_ambient, grad_uncertainty, None, None, None


composite_rays_train_uncertainty = _composite_rays_train_uncertainty.apply


class _composite_rays_uncertainty(Function):
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32) # need to cast sigmas & rgbs to float
    def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, uncertainties, weights_sum, depth, image, ambient_sum, uncertainty_sum, T_thresh=1e-2):
        _backend.composite_rays_uncertainty(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, uncertainties, weights_sum, depth, image, ambient_sum, uncertainty_sum)
        return tuple()


composite_rays_uncertainty = _composite_rays_uncertainty.apply



# triplane(eye)
class _composite_rays_train_triplane(Function):
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32)
    def forward(ctx, sigmas, rgbs, amb_aud, amb_eye, uncertainty, deltas, rays, T_thresh=1e-4):
        ''' composite rays' rgbs, according to the ray marching formula.
        Args:
            rgbs: float, [M, 3]
            sigmas: float, [M,]
            ambient: float, [M,] (after summing up the last dimension)
            deltas: float, [M, 2]
            rays: int32, [N, 3]
        Returns:
            weights_sum: float, [N,], the alpha channel
            depth: float, [N, ], the Depth
            image: float, [N, 3], the RGB channel (after multiplying alpha!)
        '''
        
        sigmas = sigmas.contiguous()
        rgbs = rgbs.contiguous()
        amb_aud = amb_aud.contiguous()
        amb_eye = amb_eye.contiguous()
        uncertainty = uncertainty.contiguous()

        M = sigmas.shape[0]
        N = rays.shape[0]

        weights_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
        amb_aud_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
        amb_eye_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
        uncertainty_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
        depth = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
        image = torch.empty(N, 3, dtype=sigmas.dtype, device=sigmas.device)

        _backend.composite_rays_train_triplane_forward(sigmas, rgbs, amb_aud, amb_eye, uncertainty, deltas, rays, M, N, T_thresh, weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, depth, image)

        ctx.save_for_backward(sigmas, rgbs, amb_aud, amb_eye, uncertainty, deltas, rays, weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, depth, image)
        ctx.dims = [M, N, T_thresh]

        return weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, depth, image
    
    @staticmethod
    @custom_bwd
    def backward(ctx, grad_weights_sum, grad_amb_aud_sum, grad_amb_eye_sum, grad_uncertainty_sum, grad_depth, grad_image):

        # NOTE: grad_depth is not used now! It won't be propagated to sigmas.

        grad_weights_sum = grad_weights_sum.contiguous()
        grad_amb_aud_sum = grad_amb_aud_sum.contiguous()
        grad_amb_eye_sum = grad_amb_eye_sum.contiguous()
        grad_uncertainty_sum = grad_uncertainty_sum.contiguous()
        grad_image = grad_image.contiguous()

        sigmas, rgbs, amb_aud, amb_eye, uncertainty, deltas, rays, weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, depth, image = ctx.saved_tensors
        M, N, T_thresh = ctx.dims
   
        grad_sigmas = torch.zeros_like(sigmas)
        grad_rgbs = torch.zeros_like(rgbs)
        grad_amb_aud = torch.zeros_like(amb_aud)
        grad_amb_eye = torch.zeros_like(amb_eye)
        grad_uncertainty = torch.zeros_like(uncertainty)

        _backend.composite_rays_train_triplane_backward(grad_weights_sum, grad_amb_aud_sum, grad_amb_eye_sum, grad_uncertainty_sum, grad_image, sigmas, rgbs, amb_aud, amb_eye, uncertainty, deltas, rays, weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, image, M, N, T_thresh, grad_sigmas, grad_rgbs, grad_amb_aud, grad_amb_eye, grad_uncertainty)

        return grad_sigmas, grad_rgbs, grad_amb_aud, grad_amb_eye, grad_uncertainty, None, None, None


composite_rays_train_triplane = _composite_rays_train_triplane.apply


class _composite_rays_triplane(Function):
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32) # need to cast sigmas & rgbs to float
    def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, ambs_aud, ambs_eye, uncertainties, weights_sum, depth, image, amb_aud_sum, amb_eye_sum, uncertainty_sum, T_thresh=1e-2):
        _backend.composite_rays_triplane(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, ambs_aud, ambs_eye, uncertainties, weights_sum, depth, image, amb_aud_sum, amb_eye_sum, uncertainty_sum)
        return tuple()


composite_rays_triplane = _composite_rays_triplane.apply