File size: 27,990 Bytes
1f99b24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
import numpy as np
import time
import torch
import torch.nn as nn
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd
try:
import _raymarching_face as _backend
except ImportError:
from .backend import _backend
# ----------------------------------------
# utils
# ----------------------------------------
class _near_far_from_aabb(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, rays_o, rays_d, aabb, min_near=0.2):
''' near_far_from_aabb, CUDA implementation
Calculate rays' intersection time (near and far) with aabb
Args:
rays_o: float, [N, 3]
rays_d: float, [N, 3]
aabb: float, [6], (xmin, ymin, zmin, xmax, ymax, zmax)
min_near: float, scalar
Returns:
nears: float, [N]
fars: float, [N]
'''
if not rays_o.is_cuda: rays_o = rays_o.cuda()
if not rays_d.is_cuda: rays_d = rays_d.cuda()
rays_o = rays_o.contiguous().view(-1, 3)
rays_d = rays_d.contiguous().view(-1, 3)
N = rays_o.shape[0] # num rays
nears = torch.empty(N, dtype=rays_o.dtype, device=rays_o.device)
fars = torch.empty(N, dtype=rays_o.dtype, device=rays_o.device)
_backend.near_far_from_aabb(rays_o, rays_d, aabb, N, min_near, nears, fars)
return nears, fars
near_far_from_aabb = _near_far_from_aabb.apply
class _sph_from_ray(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, rays_o, rays_d, radius):
''' sph_from_ray, CUDA implementation
get spherical coordinate on the background sphere from rays.
Assume rays_o are inside the Sphere(radius).
Args:
rays_o: [N, 3]
rays_d: [N, 3]
radius: scalar, float
Return:
coords: [N, 2], in [-1, 1], theta and phi on a sphere. (further-surface)
'''
if not rays_o.is_cuda: rays_o = rays_o.cuda()
if not rays_d.is_cuda: rays_d = rays_d.cuda()
rays_o = rays_o.contiguous().view(-1, 3)
rays_d = rays_d.contiguous().view(-1, 3)
N = rays_o.shape[0] # num rays
coords = torch.empty(N, 2, dtype=rays_o.dtype, device=rays_o.device)
_backend.sph_from_ray(rays_o, rays_d, radius, N, coords)
return coords
sph_from_ray = _sph_from_ray.apply
class _morton3D(Function):
@staticmethod
def forward(ctx, coords):
''' morton3D, CUDA implementation
Args:
coords: [N, 3], int32, in [0, 128) (for some reason there is no uint32 tensor in torch...)
TODO: check if the coord range is valid! (current 128 is safe)
Returns:
indices: [N], int32, in [0, 128^3)
'''
if not coords.is_cuda: coords = coords.cuda()
N = coords.shape[0]
indices = torch.empty(N, dtype=torch.int32, device=coords.device)
_backend.morton3D(coords.int(), N, indices)
return indices
morton3D = _morton3D.apply
class _morton3D_invert(Function):
@staticmethod
def forward(ctx, indices):
''' morton3D_invert, CUDA implementation
Args:
indices: [N], int32, in [0, 128^3)
Returns:
coords: [N, 3], int32, in [0, 128)
'''
if not indices.is_cuda: indices = indices.cuda()
N = indices.shape[0]
coords = torch.empty(N, 3, dtype=torch.int32, device=indices.device)
_backend.morton3D_invert(indices.int(), N, coords)
return coords
morton3D_invert = _morton3D_invert.apply
class _packbits(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, grid, thresh, bitfield=None):
''' packbits, CUDA implementation
Pack up the density grid into a bit field to accelerate ray marching.
Args:
grid: float, [C, H * H * H], assume H % 2 == 0
thresh: float, threshold
Returns:
bitfield: uint8, [C, H * H * H / 8]
'''
if not grid.is_cuda: grid = grid.cuda()
grid = grid.contiguous()
C = grid.shape[0]
H3 = grid.shape[1]
N = C * H3 // 8
if bitfield is None:
bitfield = torch.empty(N, dtype=torch.uint8, device=grid.device)
_backend.packbits(grid, N, thresh, bitfield)
return bitfield
packbits = _packbits.apply
class _morton3D_dilation(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, grid):
''' max pooling with morton coord, CUDA implementation
or maybe call it dilation... we don't support adjust kernel size.
Args:
grid: float, [C, H * H * H], assume H % 2 == 0
Returns:
grid_dilate: float, [C, H * H * H], assume H % 2 == 0bitfield: uint8, [C, H * H * H / 8]
'''
if not grid.is_cuda: grid = grid.cuda()
grid = grid.contiguous()
C = grid.shape[0]
H3 = grid.shape[1]
H = int(np.cbrt(H3))
grid_dilation = torch.empty_like(grid)
_backend.morton3D_dilation(grid, C, H, grid_dilation)
return grid_dilation
morton3D_dilation = _morton3D_dilation.apply
# ----------------------------------------
# train functions
# ----------------------------------------
class _march_rays_train(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, rays_o, rays_d, bound, density_bitfield, C, H, nears, fars, step_counter=None, mean_count=-1, perturb=False, align=-1, force_all_rays=False, dt_gamma=0, max_steps=1024):
''' march rays to generate points (forward only)
Args:
rays_o/d: float, [N, 3]
bound: float, scalar
density_bitfield: uint8: [CHHH // 8]
C: int
H: int
nears/fars: float, [N]
step_counter: int32, (2), used to count the actual number of generated points.
mean_count: int32, estimated mean steps to accelerate training. (but will randomly drop rays if the actual point count exceeded this threshold.)
perturb: bool
align: int, pad output so its size is dividable by align, set to -1 to disable.
force_all_rays: bool, ignore step_counter and mean_count, always calculate all rays. Useful if rendering the whole image, instead of some rays.
dt_gamma: float, called cone_angle in instant-ngp, exponentially accelerate ray marching if > 0. (very significant effect, but generally lead to worse performance)
max_steps: int, max number of sampled points along each ray, also affect min_stepsize.
Returns:
xyzs: float, [M, 3], all generated points' coords. (all rays concated, need to use `rays` to extract points belonging to each ray)
dirs: float, [M, 3], all generated points' view dirs.
deltas: float, [M, 2], first is delta_t, second is rays_t
rays: int32, [N, 3], all rays' (index, point_offset, point_count), e.g., xyzs[rays[i, 1]:rays[i, 1] + rays[i, 2]] --> points belonging to rays[i, 0]
'''
if not rays_o.is_cuda: rays_o = rays_o.cuda()
if not rays_d.is_cuda: rays_d = rays_d.cuda()
if not density_bitfield.is_cuda: density_bitfield = density_bitfield.cuda()
rays_o = rays_o.contiguous().view(-1, 3)
rays_d = rays_d.contiguous().view(-1, 3)
density_bitfield = density_bitfield.contiguous()
N = rays_o.shape[0] # num rays
M = N * max_steps # init max points number in total
# running average based on previous epoch (mimic `measured_batch_size_before_compaction` in instant-ngp)
# It estimate the max points number to enable faster training, but will lead to random ignored rays if underestimated.
if not force_all_rays and mean_count > 0:
if align > 0:
mean_count += align - mean_count % align
M = mean_count
xyzs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device)
dirs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device)
deltas = torch.zeros(M, 2, dtype=rays_o.dtype, device=rays_o.device)
rays = torch.empty(N, 3, dtype=torch.int32, device=rays_o.device) # id, offset, num_steps
if step_counter is None:
step_counter = torch.zeros(2, dtype=torch.int32, device=rays_o.device) # point counter, ray counter
if perturb:
noises = torch.rand(N, dtype=rays_o.dtype, device=rays_o.device)
else:
noises = torch.zeros(N, dtype=rays_o.dtype, device=rays_o.device)
_backend.march_rays_train(rays_o, rays_d, density_bitfield, bound, dt_gamma, max_steps, N, C, H, M, nears, fars, xyzs, dirs, deltas, rays, step_counter, noises) # m is the actually used points number
#print(step_counter, M)
# only used at the first (few) epochs.
if force_all_rays or mean_count <= 0:
m = step_counter[0].item() # D2H copy
if align > 0:
m += align - m % align
xyzs = xyzs[:m]
dirs = dirs[:m]
deltas = deltas[:m]
torch.cuda.empty_cache()
ctx.save_for_backward(rays, deltas)
return xyzs, dirs, deltas, rays
# to support optimizing camera poses.
@staticmethod
@custom_bwd
def backward(ctx, grad_xyzs, grad_dirs, grad_deltas, grad_rays):
# grad_xyzs/dirs: [M, 3]
rays, deltas = ctx.saved_tensors
N = rays.shape[0]
M = grad_xyzs.shape[0]
grad_rays_o = torch.zeros(N, 3, device=rays.device)
grad_rays_d = torch.zeros(N, 3, device=rays.device)
_backend.march_rays_train_backward(grad_xyzs, grad_dirs, rays, deltas, N, M, grad_rays_o, grad_rays_d)
return grad_rays_o, grad_rays_d, None, None, None, None, None, None, None, None, None, None, None, None, None
march_rays_train = _march_rays_train.apply
class _composite_rays_train(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, sigmas, rgbs, ambient, deltas, rays, T_thresh=1e-4):
''' composite rays' rgbs, according to the ray marching formula.
Args:
rgbs: float, [M, 3]
sigmas: float, [M,]
ambient: float, [M,] (after summing up the last dimension)
deltas: float, [M, 2]
rays: int32, [N, 3]
Returns:
weights_sum: float, [N,], the alpha channel
depth: float, [N, ], the Depth
image: float, [N, 3], the RGB channel (after multiplying alpha!)
'''
sigmas = sigmas.contiguous()
rgbs = rgbs.contiguous()
ambient = ambient.contiguous()
M = sigmas.shape[0]
N = rays.shape[0]
weights_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
ambient_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
depth = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
image = torch.empty(N, 3, dtype=sigmas.dtype, device=sigmas.device)
_backend.composite_rays_train_forward(sigmas, rgbs, ambient, deltas, rays, M, N, T_thresh, weights_sum, ambient_sum, depth, image)
ctx.save_for_backward(sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, depth, image)
ctx.dims = [M, N, T_thresh]
return weights_sum, ambient_sum, depth, image
@staticmethod
@custom_bwd
def backward(ctx, grad_weights_sum, grad_ambient_sum, grad_depth, grad_image):
# NOTE: grad_depth is not used now! It won't be propagated to sigmas.
grad_weights_sum = grad_weights_sum.contiguous()
grad_ambient_sum = grad_ambient_sum.contiguous()
grad_image = grad_image.contiguous()
sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, depth, image = ctx.saved_tensors
M, N, T_thresh = ctx.dims
grad_sigmas = torch.zeros_like(sigmas)
grad_rgbs = torch.zeros_like(rgbs)
grad_ambient = torch.zeros_like(ambient)
_backend.composite_rays_train_backward(grad_weights_sum, grad_ambient_sum, grad_image, sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, image, M, N, T_thresh, grad_sigmas, grad_rgbs, grad_ambient)
return grad_sigmas, grad_rgbs, grad_ambient, None, None, None
composite_rays_train = _composite_rays_train.apply
# ----------------------------------------
# infer functions
# ----------------------------------------
class _march_rays(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, n_alive, n_step, rays_alive, rays_t, rays_o, rays_d, bound, density_bitfield, C, H, near, far, align=-1, perturb=False, dt_gamma=0, max_steps=1024):
''' march rays to generate points (forward only, for inference)
Args:
n_alive: int, number of alive rays
n_step: int, how many steps we march
rays_alive: int, [N], the alive rays' IDs in N (N >= n_alive, but we only use first n_alive)
rays_t: float, [N], the alive rays' time, we only use the first n_alive.
rays_o/d: float, [N, 3]
bound: float, scalar
density_bitfield: uint8: [CHHH // 8]
C: int
H: int
nears/fars: float, [N]
align: int, pad output so its size is dividable by align, set to -1 to disable.
perturb: bool/int, int > 0 is used as the random seed.
dt_gamma: float, called cone_angle in instant-ngp, exponentially accelerate ray marching if > 0. (very significant effect, but generally lead to worse performance)
max_steps: int, max number of sampled points along each ray, also affect min_stepsize.
Returns:
xyzs: float, [n_alive * n_step, 3], all generated points' coords
dirs: float, [n_alive * n_step, 3], all generated points' view dirs.
deltas: float, [n_alive * n_step, 2], all generated points' deltas (here we record two deltas, the first is for RGB, the second for depth).
'''
if not rays_o.is_cuda: rays_o = rays_o.cuda()
if not rays_d.is_cuda: rays_d = rays_d.cuda()
rays_o = rays_o.contiguous().view(-1, 3)
rays_d = rays_d.contiguous().view(-1, 3)
M = n_alive * n_step
if align > 0:
M += align - (M % align)
xyzs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device)
dirs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device)
deltas = torch.zeros(M, 2, dtype=rays_o.dtype, device=rays_o.device) # 2 vals, one for rgb, one for depth
if perturb:
# torch.manual_seed(perturb) # test_gui uses spp index as seed
noises = torch.rand(n_alive, dtype=rays_o.dtype, device=rays_o.device)
else:
noises = torch.zeros(n_alive, dtype=rays_o.dtype, device=rays_o.device)
_backend.march_rays(n_alive, n_step, rays_alive, rays_t, rays_o, rays_d, bound, dt_gamma, max_steps, C, H, density_bitfield, near, far, xyzs, dirs, deltas, noises)
return xyzs, dirs, deltas
march_rays = _march_rays.apply
class _composite_rays(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32) # need to cast sigmas & rgbs to float
def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, weights_sum, depth, image, T_thresh=1e-2):
''' composite rays' rgbs, according to the ray marching formula. (for inference)
Args:
n_alive: int, number of alive rays
n_step: int, how many steps we march
rays_alive: int, [n_alive], the alive rays' IDs in N (N >= n_alive)
rays_t: float, [N], the alive rays' time
sigmas: float, [n_alive * n_step,]
rgbs: float, [n_alive * n_step, 3]
deltas: float, [n_alive * n_step, 2], all generated points' deltas (here we record two deltas, the first is for RGB, the second for depth).
In-place Outputs:
weights_sum: float, [N,], the alpha channel
depth: float, [N,], the depth value
image: float, [N, 3], the RGB channel (after multiplying alpha!)
'''
_backend.composite_rays(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, weights_sum, depth, image)
return tuple()
composite_rays = _composite_rays.apply
class _composite_rays_ambient(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32) # need to cast sigmas & rgbs to float
def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, weights_sum, depth, image, ambient_sum, T_thresh=1e-2):
_backend.composite_rays_ambient(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, weights_sum, depth, image, ambient_sum)
return tuple()
composite_rays_ambient = _composite_rays_ambient.apply
# custom
class _composite_rays_train_sigma(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, sigmas, rgbs, ambient, deltas, rays, T_thresh=1e-4):
''' composite rays' rgbs, according to the ray marching formula.
Args:
rgbs: float, [M, 3]
sigmas: float, [M,]
ambient: float, [M,] (after summing up the last dimension)
deltas: float, [M, 2]
rays: int32, [N, 3]
Returns:
weights_sum: float, [N,], the alpha channel
depth: float, [N, ], the Depth
image: float, [N, 3], the RGB channel (after multiplying alpha!)
'''
sigmas = sigmas.contiguous()
rgbs = rgbs.contiguous()
ambient = ambient.contiguous()
M = sigmas.shape[0]
N = rays.shape[0]
weights_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
ambient_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
depth = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
image = torch.empty(N, 3, dtype=sigmas.dtype, device=sigmas.device)
_backend.composite_rays_train_sigma_forward(sigmas, rgbs, ambient, deltas, rays, M, N, T_thresh, weights_sum, ambient_sum, depth, image)
ctx.save_for_backward(sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, depth, image)
ctx.dims = [M, N, T_thresh]
return weights_sum, ambient_sum, depth, image
@staticmethod
@custom_bwd
def backward(ctx, grad_weights_sum, grad_ambient_sum, grad_depth, grad_image):
# NOTE: grad_depth is not used now! It won't be propagated to sigmas.
grad_weights_sum = grad_weights_sum.contiguous()
grad_ambient_sum = grad_ambient_sum.contiguous()
grad_image = grad_image.contiguous()
sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, depth, image = ctx.saved_tensors
M, N, T_thresh = ctx.dims
grad_sigmas = torch.zeros_like(sigmas)
grad_rgbs = torch.zeros_like(rgbs)
grad_ambient = torch.zeros_like(ambient)
_backend.composite_rays_train_sigma_backward(grad_weights_sum, grad_ambient_sum, grad_image, sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, image, M, N, T_thresh, grad_sigmas, grad_rgbs, grad_ambient)
return grad_sigmas, grad_rgbs, grad_ambient, None, None, None
composite_rays_train_sigma = _composite_rays_train_sigma.apply
class _composite_rays_ambient_sigma(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32) # need to cast sigmas & rgbs to float
def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, weights_sum, depth, image, ambient_sum, T_thresh=1e-2):
_backend.composite_rays_ambient_sigma(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, weights_sum, depth, image, ambient_sum)
return tuple()
composite_rays_ambient_sigma = _composite_rays_ambient_sigma.apply
# uncertainty
class _composite_rays_train_uncertainty(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, sigmas, rgbs, ambient, uncertainty, deltas, rays, T_thresh=1e-4):
''' composite rays' rgbs, according to the ray marching formula.
Args:
rgbs: float, [M, 3]
sigmas: float, [M,]
ambient: float, [M,] (after summing up the last dimension)
deltas: float, [M, 2]
rays: int32, [N, 3]
Returns:
weights_sum: float, [N,], the alpha channel
depth: float, [N, ], the Depth
image: float, [N, 3], the RGB channel (after multiplying alpha!)
'''
sigmas = sigmas.contiguous()
rgbs = rgbs.contiguous()
ambient = ambient.contiguous()
uncertainty = uncertainty.contiguous()
M = sigmas.shape[0]
N = rays.shape[0]
weights_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
ambient_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
uncertainty_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
depth = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
image = torch.empty(N, 3, dtype=sigmas.dtype, device=sigmas.device)
_backend.composite_rays_train_uncertainty_forward(sigmas, rgbs, ambient, uncertainty, deltas, rays, M, N, T_thresh, weights_sum, ambient_sum, uncertainty_sum, depth, image)
ctx.save_for_backward(sigmas, rgbs, ambient, uncertainty, deltas, rays, weights_sum, ambient_sum, uncertainty_sum, depth, image)
ctx.dims = [M, N, T_thresh]
return weights_sum, ambient_sum, uncertainty_sum, depth, image
@staticmethod
@custom_bwd
def backward(ctx, grad_weights_sum, grad_ambient_sum, grad_uncertainty_sum, grad_depth, grad_image):
# NOTE: grad_depth is not used now! It won't be propagated to sigmas.
grad_weights_sum = grad_weights_sum.contiguous()
grad_ambient_sum = grad_ambient_sum.contiguous()
grad_uncertainty_sum = grad_uncertainty_sum.contiguous()
grad_image = grad_image.contiguous()
sigmas, rgbs, ambient, uncertainty, deltas, rays, weights_sum, ambient_sum, uncertainty_sum, depth, image = ctx.saved_tensors
M, N, T_thresh = ctx.dims
grad_sigmas = torch.zeros_like(sigmas)
grad_rgbs = torch.zeros_like(rgbs)
grad_ambient = torch.zeros_like(ambient)
grad_uncertainty = torch.zeros_like(uncertainty)
_backend.composite_rays_train_uncertainty_backward(grad_weights_sum, grad_ambient_sum, grad_uncertainty_sum, grad_image, sigmas, rgbs, ambient, uncertainty, deltas, rays, weights_sum, ambient_sum, uncertainty_sum, image, M, N, T_thresh, grad_sigmas, grad_rgbs, grad_ambient, grad_uncertainty)
return grad_sigmas, grad_rgbs, grad_ambient, grad_uncertainty, None, None, None
composite_rays_train_uncertainty = _composite_rays_train_uncertainty.apply
class _composite_rays_uncertainty(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32) # need to cast sigmas & rgbs to float
def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, uncertainties, weights_sum, depth, image, ambient_sum, uncertainty_sum, T_thresh=1e-2):
_backend.composite_rays_uncertainty(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, uncertainties, weights_sum, depth, image, ambient_sum, uncertainty_sum)
return tuple()
composite_rays_uncertainty = _composite_rays_uncertainty.apply
# triplane(eye)
class _composite_rays_train_triplane(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, sigmas, rgbs, amb_aud, amb_eye, uncertainty, deltas, rays, T_thresh=1e-4):
''' composite rays' rgbs, according to the ray marching formula.
Args:
rgbs: float, [M, 3]
sigmas: float, [M,]
ambient: float, [M,] (after summing up the last dimension)
deltas: float, [M, 2]
rays: int32, [N, 3]
Returns:
weights_sum: float, [N,], the alpha channel
depth: float, [N, ], the Depth
image: float, [N, 3], the RGB channel (after multiplying alpha!)
'''
sigmas = sigmas.contiguous()
rgbs = rgbs.contiguous()
amb_aud = amb_aud.contiguous()
amb_eye = amb_eye.contiguous()
uncertainty = uncertainty.contiguous()
M = sigmas.shape[0]
N = rays.shape[0]
weights_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
amb_aud_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
amb_eye_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
uncertainty_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
depth = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device)
image = torch.empty(N, 3, dtype=sigmas.dtype, device=sigmas.device)
_backend.composite_rays_train_triplane_forward(sigmas, rgbs, amb_aud, amb_eye, uncertainty, deltas, rays, M, N, T_thresh, weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, depth, image)
ctx.save_for_backward(sigmas, rgbs, amb_aud, amb_eye, uncertainty, deltas, rays, weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, depth, image)
ctx.dims = [M, N, T_thresh]
return weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, depth, image
@staticmethod
@custom_bwd
def backward(ctx, grad_weights_sum, grad_amb_aud_sum, grad_amb_eye_sum, grad_uncertainty_sum, grad_depth, grad_image):
# NOTE: grad_depth is not used now! It won't be propagated to sigmas.
grad_weights_sum = grad_weights_sum.contiguous()
grad_amb_aud_sum = grad_amb_aud_sum.contiguous()
grad_amb_eye_sum = grad_amb_eye_sum.contiguous()
grad_uncertainty_sum = grad_uncertainty_sum.contiguous()
grad_image = grad_image.contiguous()
sigmas, rgbs, amb_aud, amb_eye, uncertainty, deltas, rays, weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, depth, image = ctx.saved_tensors
M, N, T_thresh = ctx.dims
grad_sigmas = torch.zeros_like(sigmas)
grad_rgbs = torch.zeros_like(rgbs)
grad_amb_aud = torch.zeros_like(amb_aud)
grad_amb_eye = torch.zeros_like(amb_eye)
grad_uncertainty = torch.zeros_like(uncertainty)
_backend.composite_rays_train_triplane_backward(grad_weights_sum, grad_amb_aud_sum, grad_amb_eye_sum, grad_uncertainty_sum, grad_image, sigmas, rgbs, amb_aud, amb_eye, uncertainty, deltas, rays, weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, image, M, N, T_thresh, grad_sigmas, grad_rgbs, grad_amb_aud, grad_amb_eye, grad_uncertainty)
return grad_sigmas, grad_rgbs, grad_amb_aud, grad_amb_eye, grad_uncertainty, None, None, None
composite_rays_train_triplane = _composite_rays_train_triplane.apply
class _composite_rays_triplane(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32) # need to cast sigmas & rgbs to float
def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, ambs_aud, ambs_eye, uncertainties, weights_sum, depth, image, amb_aud_sum, amb_eye_sum, uncertainty_sum, T_thresh=1e-2):
_backend.composite_rays_triplane(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, ambs_aud, ambs_eye, uncertainties, weights_sum, depth, image, amb_aud_sum, amb_eye_sum, uncertainty_sum)
return tuple()
composite_rays_triplane = _composite_rays_triplane.apply |