update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
model-index:
|
11 |
+
- name: swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final_08
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.9591516103692066
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.9627515459909033
|
29 |
+
---
|
30 |
+
|
31 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
32 |
+
should probably proofread and complete it, then remove this comment. -->
|
33 |
+
|
34 |
+
# swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final_08
|
35 |
+
|
36 |
+
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset.
|
37 |
+
It achieves the following results on the evaluation set:
|
38 |
+
- Loss: 0.1210
|
39 |
+
- Accuracy: 0.9592
|
40 |
+
- F1 Score: 0.9600
|
41 |
+
- Precision: 0.9628
|
42 |
+
|
43 |
+
## Model description
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Intended uses & limitations
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training and evaluation data
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Training procedure
|
56 |
+
|
57 |
+
### Training hyperparameters
|
58 |
+
|
59 |
+
The following hyperparameters were used during training:
|
60 |
+
- learning_rate: 5e-05
|
61 |
+
- train_batch_size: 100
|
62 |
+
- eval_batch_size: 100
|
63 |
+
- seed: 42
|
64 |
+
- gradient_accumulation_steps: 4
|
65 |
+
- total_train_batch_size: 400
|
66 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
67 |
+
- lr_scheduler_type: linear
|
68 |
+
- lr_scheduler_warmup_ratio: 0.1
|
69 |
+
- num_epochs: 10
|
70 |
+
|
71 |
+
### Training results
|
72 |
+
|
73 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Precision |
|
74 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|
|
75 |
+
| 1.2882 | 0.99 | 19 | 0.5469 | 0.7962 | 0.7863 | 0.8077 |
|
76 |
+
| 0.3491 | 1.97 | 38 | 0.3030 | 0.8861 | 0.8878 | 0.8981 |
|
77 |
+
| 0.1791 | 2.96 | 57 | 0.2077 | 0.9211 | 0.9229 | 0.9307 |
|
78 |
+
| 0.122 | 4.0 | 77 | 0.2007 | 0.9254 | 0.9272 | 0.9369 |
|
79 |
+
| 0.0671 | 4.99 | 96 | 0.2073 | 0.9269 | 0.9294 | 0.9401 |
|
80 |
+
| 0.0474 | 5.97 | 115 | 0.1384 | 0.9482 | 0.9494 | 0.9547 |
|
81 |
+
| 0.032 | 6.96 | 134 | 0.1683 | 0.9430 | 0.9447 | 0.9511 |
|
82 |
+
| 0.0225 | 8.0 | 154 | 0.1101 | 0.9650 | 0.9657 | 0.9671 |
|
83 |
+
| 0.0193 | 8.99 | 173 | 0.1372 | 0.9533 | 0.9544 | 0.9585 |
|
84 |
+
| 0.0193 | 9.87 | 190 | 0.1210 | 0.9592 | 0.9600 | 0.9628 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.29.2
|
90 |
+
- Pytorch 2.0.1+cu117
|
91 |
+
- Datasets 2.12.0
|
92 |
+
- Tokenizers 0.13.3
|