File size: 1,990 Bytes
8fcb38c 948237a 05510b7 0b7b09f 8fcb38c 05510b7 0b7b09f 05510b7 0b7b09f 05510b7 0b7b09f 8fcb38c 05510b7 8fcb38c 05510b7 8fcb38c 05510b7 8fcb38c 05510b7 8fcb38c 05510b7 8fcb38c 05510b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- beans
metrics:
- accuracy
base_model: google/vit-base-patch16-224-in21k
model-index:
- name: vit-base-beans
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: beans
type: beans
config: default
split: validation
args: default
metrics:
- type: accuracy
value: 0.9849624060150376
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-beans
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0630
- Accuracy: 0.9850
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3038 | 1.0 | 130 | 0.2396 | 0.9624 |
| 0.1609 | 2.0 | 260 | 0.1130 | 0.9774 |
| 0.2313 | 3.0 | 390 | 0.0809 | 0.9850 |
| 0.1436 | 4.0 | 520 | 0.0738 | 0.9850 |
| 0.1086 | 5.0 | 650 | 0.0630 | 0.9850 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.14.0.dev20221118
- Datasets 2.9.1.dev0
- Tokenizers 0.13.2
|