KOHYA_SS-21.55 / lora_gui.py
andzhang01's picture
Upload 42 files
a4be04d
# v1: initial release
# v2: add open and save folder icons
# v3: Add new Utilities tab for Dreambooth folder preparation
# v3.1: Adding captionning of images to utilities
import gradio as gr
import easygui
import json
import math
import os
import subprocess
import pathlib
import argparse
from library.common_gui import (
get_folder_path,
remove_doublequote,
get_file_path,
get_any_file_path,
get_saveasfile_path,
color_aug_changed,
save_inference_file,
gradio_advanced_training,
run_cmd_advanced_training,
gradio_training,
gradio_config,
gradio_source_model,
run_cmd_training,
# set_legacy_8bitadam,
update_my_data,
check_if_model_exist,
)
from library.dreambooth_folder_creation_gui import (
gradio_dreambooth_folder_creation_tab,
)
from library.tensorboard_gui import (
gradio_tensorboard,
start_tensorboard,
stop_tensorboard,
)
from library.dataset_balancing_gui import gradio_dataset_balancing_tab
from library.utilities import utilities_tab
from library.merge_lora_gui import gradio_merge_lora_tab
from library.svd_merge_lora_gui import gradio_svd_merge_lora_tab
from library.verify_lora_gui import gradio_verify_lora_tab
from library.resize_lora_gui import gradio_resize_lora_tab
from library.sampler_gui import sample_gradio_config, run_cmd_sample
from easygui import msgbox
folder_symbol = '\U0001f4c2' # πŸ“‚
refresh_symbol = '\U0001f504' # πŸ”„
save_style_symbol = '\U0001f4be' # πŸ’Ύ
document_symbol = '\U0001F4C4' # πŸ“„
path_of_this_folder = os.getcwd()
def save_configuration(
save_as,
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latents,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
no_token_padding,
stop_text_encoder_training,
# use_8bit_adam,
xformers,
save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
text_encoder_lr,
unet_lr,
network_dim,
lora_network_weights,
color_aug,
flip_aug,
clip_skip,
gradient_accumulation_steps,
mem_eff_attn,
output_name,
model_list,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,
network_alpha,
training_comment,
keep_tokens,
lr_scheduler_num_cycles,
lr_scheduler_power,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
noise_offset,
LoRA_type,
conv_dim,
conv_alpha,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
vae_batch_size,
min_snr_gamma,
down_lr_weight,mid_lr_weight,up_lr_weight,block_lr_zero_threshold,block_dims,block_alphas,conv_dims,conv_alphas,
weighted_captions,unit,
):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path
save_as_bool = True if save_as.get('label') == 'True' else False
if save_as_bool:
print('Save as...')
file_path = get_saveasfile_path(file_path)
else:
print('Save...')
if file_path == None or file_path == '':
file_path = get_saveasfile_path(file_path)
# print(file_path)
if file_path == None or file_path == '':
return original_file_path # In case a file_path was provided and the user decide to cancel the open action
# Return the values of the variables as a dictionary
variables = {
name: value
for name, value in parameters # locals().items()
if name
not in [
'file_path',
'save_as',
]
}
# Extract the destination directory from the file path
destination_directory = os.path.dirname(file_path)
# Create the destination directory if it doesn't exist
if not os.path.exists(destination_directory):
os.makedirs(destination_directory)
# Save the data to the selected file
with open(file_path, 'w') as file:
json.dump(variables, file, indent=2)
return file_path
def open_configuration(
ask_for_file,
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latents,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
no_token_padding,
stop_text_encoder_training,
# use_8bit_adam,
xformers,
save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
text_encoder_lr,
unet_lr,
network_dim,
lora_network_weights,
color_aug,
flip_aug,
clip_skip,
gradient_accumulation_steps,
mem_eff_attn,
output_name,
model_list,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,
network_alpha,
training_comment,
keep_tokens,
lr_scheduler_num_cycles,
lr_scheduler_power,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
noise_offset,
LoRA_type,
conv_dim,
conv_alpha,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
vae_batch_size,
min_snr_gamma,
down_lr_weight,mid_lr_weight,up_lr_weight,block_lr_zero_threshold,block_dims,block_alphas,conv_dims,conv_alphas,
weighted_captions,unit,
):
# Get list of function parameters and values
parameters = list(locals().items())
ask_for_file = True if ask_for_file.get('label') == 'True' else False
original_file_path = file_path
if ask_for_file:
file_path = get_file_path(file_path)
if not file_path == '' and not file_path == None:
# load variables from JSON file
with open(file_path, 'r') as f:
my_data = json.load(f)
print('Loading config...')
# Update values to fix deprecated use_8bit_adam checkbox, set appropriate optimizer if it is set to True, etc.
my_data = update_my_data(my_data)
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data = {}
values = [file_path]
for key, value in parameters:
# Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found
if not key in ['ask_for_file', 'file_path']:
values.append(my_data.get(key, value))
# This next section is about making the LoCon parameters visible if LoRA_type = 'Standard'
if my_data.get('LoRA_type', 'Standard') == 'LoCon':
values.append(gr.Row.update(visible=True))
else:
values.append(gr.Row.update(visible=False))
return tuple(values)
def train_model(
print_only,
pretrained_model_name_or_path,
v2,
v_parameterization,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latents,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
no_token_padding,
stop_text_encoder_training_pct,
# use_8bit_adam,
xformers,
save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
text_encoder_lr,
unet_lr,
network_dim,
lora_network_weights,
color_aug,
flip_aug,
clip_skip,
gradient_accumulation_steps,
mem_eff_attn,
output_name,
model_list, # Keep this. Yes, it is unused here but required given the common list used
max_token_length,
max_train_epochs,
max_data_loader_n_workers,
network_alpha,
training_comment,
keep_tokens,
lr_scheduler_num_cycles,
lr_scheduler_power,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
noise_offset,
LoRA_type,
conv_dim,
conv_alpha,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
vae_batch_size,
min_snr_gamma,
down_lr_weight,mid_lr_weight,up_lr_weight,block_lr_zero_threshold,block_dims,block_alphas,conv_dims,conv_alphas,
weighted_captions,unit,
):
print_only_bool = True if print_only.get('label') == 'True' else False
if pretrained_model_name_or_path == '':
msgbox('Source model information is missing')
return
if train_data_dir == '':
msgbox('Image folder path is missing')
return
if not os.path.exists(train_data_dir):
msgbox('Image folder does not exist')
return
if reg_data_dir != '':
if not os.path.exists(reg_data_dir):
msgbox('Regularisation folder does not exist')
return
if output_dir == '':
msgbox('Output folder path is missing')
return
if int(bucket_reso_steps) < 1:
msgbox('Bucket resolution steps need to be greater than 0')
return
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if stop_text_encoder_training_pct > 0:
msgbox(
'Output "stop text encoder training" is not yet supported. Ignoring'
)
stop_text_encoder_training_pct = 0
if check_if_model_exist(output_name, output_dir, save_model_as):
return
if optimizer == 'Adafactor' and lr_warmup != '0':
msgbox("Warning: lr_scheduler is set to 'Adafactor', so 'LR warmup (% of steps)' will be considered 0.", title="Warning")
lr_warmup = '0'
# If string is empty set string to 0.
if text_encoder_lr == '':
text_encoder_lr = 0
if unet_lr == '':
unet_lr = 0
# if (float(text_encoder_lr) == 0) and (float(unet_lr) == 0):
# msgbox(
# 'At least one Learning Rate value for "Text encoder" or "Unet" need to be provided'
# )
# return
# Get a list of all subfolders in train_data_dir
subfolders = [
f
for f in os.listdir(train_data_dir)
if os.path.isdir(os.path.join(train_data_dir, f))
]
total_steps = 0
# Loop through each subfolder and extract the number of repeats
for folder in subfolders:
try:
# Extract the number of repeats from the folder name
repeats = int(folder.split('_')[0])
# Count the number of images in the folder
num_images = len(
[
f
for f, lower_f in (
(file, file.lower())
for file in os.listdir(
os.path.join(train_data_dir, folder)
)
)
if lower_f.endswith(('.jpg', '.jpeg', '.png', '.webp'))
]
)
print(f'Folder {folder}: {num_images} images found')
# Calculate the total number of steps for this folder
steps = repeats * num_images
# Print the result
print(f'Folder {folder}: {steps} steps')
total_steps += steps
except ValueError:
# Handle the case where the folder name does not contain an underscore
print(f"Error: '{folder}' does not contain an underscore, skipping...")
# calculate max_train_steps
max_train_steps = int(
math.ceil(
float(total_steps)
/ int(train_batch_size)
* int(epoch)
# * int(reg_factor)
)
)
print(f'max_train_steps = {max_train_steps}')
# calculate stop encoder training
if stop_text_encoder_training_pct == None:
stop_text_encoder_training = 0
else:
stop_text_encoder_training = math.ceil(
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct)
)
print(f'stop_text_encoder_training = {stop_text_encoder_training}')
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
print(f'lr_warmup_steps = {lr_warmup_steps}')
run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "train_network.py"'
if v2:
run_cmd += ' --v2'
if v_parameterization:
run_cmd += ' --v_parameterization'
if enable_bucket:
run_cmd += ' --enable_bucket'
if no_token_padding:
run_cmd += ' --no_token_padding'
if weighted_captions:
run_cmd += ' --weighted_captions'
run_cmd += (
f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"'
)
run_cmd += f' --train_data_dir="{train_data_dir}"'
if len(reg_data_dir):
run_cmd += f' --reg_data_dir="{reg_data_dir}"'
run_cmd += f' --resolution={max_resolution}'
run_cmd += f' --output_dir="{output_dir}"'
run_cmd += f' --logging_dir="{logging_dir}"'
run_cmd += f' --network_alpha="{network_alpha}"'
if not training_comment == '':
run_cmd += f' --training_comment="{training_comment}"'
if not stop_text_encoder_training == 0:
run_cmd += (
f' --stop_text_encoder_training={stop_text_encoder_training}'
)
if not save_model_as == 'same as source model':
run_cmd += f' --save_model_as={save_model_as}'
if not float(prior_loss_weight) == 1.0:
run_cmd += f' --prior_loss_weight={prior_loss_weight}'
if LoRA_type == 'LoCon' or LoRA_type == 'LyCORIS/LoCon':
try:
import lycoris
except ModuleNotFoundError:
print(
"\033[1;31mError:\033[0m The required module 'lycoris_lora' is not installed. Please install by running \033[33mupgrade.ps1\033[0m before running this program."
)
return
run_cmd += f' --network_module=lycoris.kohya'
run_cmd += f' --network_args "conv_dim={conv_dim}" "conv_alpha={conv_alpha}" "algo=lora"'
if LoRA_type == 'LyCORIS/LoHa':
try:
import lycoris
except ModuleNotFoundError:
print(
"\033[1;31mError:\033[0m The required module 'lycoris_lora' is not installed. Please install by running \033[33mupgrade.ps1\033[0m before running this program."
)
return
run_cmd += f' --network_module=lycoris.kohya'
run_cmd += f' --network_args "conv_dim={conv_dim}" "conv_alpha={conv_alpha}" "algo=loha"'
if LoRA_type in ['Kohya LoCon', 'Standard']:
kohya_lora_var_list = ['down_lr_weight', 'mid_lr_weight', 'up_lr_weight', 'block_lr_zero_threshold', 'block_dims', 'block_alphas', 'conv_dims', 'conv_alphas']
run_cmd += f' --network_module=networks.lora'
kohya_lora_vars = {key: value for key, value in vars().items() if key in kohya_lora_var_list and value}
network_args = ''
if LoRA_type == 'Kohya LoCon':
network_args += f' "conv_dim={conv_dim}" "conv_alpha={conv_alpha}"'
for key, value in kohya_lora_vars.items():
if value:
network_args += f' {key}="{value}"'
if network_args:
run_cmd += f' --network_args{network_args}'
if LoRA_type in ['Kohya DyLoRA']:
kohya_lora_var_list = ['conv_dim', 'conv_alpha', 'down_lr_weight', 'mid_lr_weight', 'up_lr_weight', 'block_lr_zero_threshold', 'block_dims', 'block_alphas', 'conv_dims', 'conv_alphas', 'unit']
run_cmd += f' --network_module=networks.dylora'
kohya_lora_vars = {key: value for key, value in vars().items() if key in kohya_lora_var_list and value}
network_args = ''
for key, value in kohya_lora_vars.items():
if value:
network_args += f' {key}="{value}"'
if network_args:
run_cmd += f' --network_args{network_args}'
if not (float(text_encoder_lr) == 0) or not (float(unet_lr) == 0):
if not (float(text_encoder_lr) == 0) and not (float(unet_lr) == 0):
run_cmd += f' --text_encoder_lr={text_encoder_lr}'
run_cmd += f' --unet_lr={unet_lr}'
elif not (float(text_encoder_lr) == 0):
run_cmd += f' --text_encoder_lr={text_encoder_lr}'
run_cmd += f' --network_train_text_encoder_only'
else:
run_cmd += f' --unet_lr={unet_lr}'
run_cmd += f' --network_train_unet_only'
else:
if float(text_encoder_lr) == 0:
msgbox('Please input learning rate values.')
return
run_cmd += f' --network_dim={network_dim}'
if not lora_network_weights == '':
run_cmd += f' --network_weights="{lora_network_weights}"'
if int(gradient_accumulation_steps) > 1:
run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}'
if not output_name == '':
run_cmd += f' --output_name="{output_name}"'
if not lr_scheduler_num_cycles == '':
run_cmd += f' --lr_scheduler_num_cycles="{lr_scheduler_num_cycles}"'
else:
run_cmd += f' --lr_scheduler_num_cycles="{epoch}"'
if not lr_scheduler_power == '':
run_cmd += f' --lr_scheduler_power="{lr_scheduler_power}"'
run_cmd += run_cmd_training(
learning_rate=learning_rate,
lr_scheduler=lr_scheduler,
lr_warmup_steps=lr_warmup_steps,
train_batch_size=train_batch_size,
max_train_steps=max_train_steps,
save_every_n_epochs=save_every_n_epochs,
mixed_precision=mixed_precision,
save_precision=save_precision,
seed=seed,
caption_extension=caption_extension,
cache_latents=cache_latents,
optimizer=optimizer,
optimizer_args=optimizer_args,
)
run_cmd += run_cmd_advanced_training(
max_train_epochs=max_train_epochs,
max_data_loader_n_workers=max_data_loader_n_workers,
max_token_length=max_token_length,
resume=resume,
save_state=save_state,
mem_eff_attn=mem_eff_attn,
clip_skip=clip_skip,
flip_aug=flip_aug,
color_aug=color_aug,
shuffle_caption=shuffle_caption,
gradient_checkpointing=gradient_checkpointing,
full_fp16=full_fp16,
xformers=xformers,
# use_8bit_adam=use_8bit_adam,
keep_tokens=keep_tokens,
persistent_data_loader_workers=persistent_data_loader_workers,
bucket_no_upscale=bucket_no_upscale,
random_crop=random_crop,
bucket_reso_steps=bucket_reso_steps,
caption_dropout_every_n_epochs=caption_dropout_every_n_epochs,
caption_dropout_rate=caption_dropout_rate,
noise_offset=noise_offset,
additional_parameters=additional_parameters,
vae_batch_size=vae_batch_size,
min_snr_gamma=min_snr_gamma,
)
run_cmd += run_cmd_sample(
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
output_dir,
)
# if not down_lr_weight == '':
# run_cmd += f' --down_lr_weight="{down_lr_weight}"'
# if not mid_lr_weight == '':
# run_cmd += f' --mid_lr_weight="{mid_lr_weight}"'
# if not up_lr_weight == '':
# run_cmd += f' --up_lr_weight="{up_lr_weight}"'
# if not block_lr_zero_threshold == '':
# run_cmd += f' --block_lr_zero_threshold="{block_lr_zero_threshold}"'
# if not block_dims == '':
# run_cmd += f' --block_dims="{block_dims}"'
# if not block_alphas == '':
# run_cmd += f' --block_alphas="{block_alphas}"'
# if not conv_dims == '':
# run_cmd += f' --conv_dims="{conv_dims}"'
# if not conv_alphas == '':
# run_cmd += f' --conv_alphas="{conv_alphas}"'
if print_only_bool:
print(
'\033[93m\nHere is the trainer command as a reference. It will not be executed:\033[0m\n'
)
print('\033[96m' + run_cmd + '\033[0m\n')
else:
print(run_cmd)
# Run the command
if os.name == 'posix':
os.system(run_cmd)
else:
subprocess.run(run_cmd)
# check if output_dir/last is a folder... therefore it is a diffuser model
last_dir = pathlib.Path(f'{output_dir}/{output_name}')
if not last_dir.is_dir():
# Copy inference model for v2 if required
save_inference_file(
output_dir, v2, v_parameterization, output_name
)
def lora_tab(
train_data_dir_input=gr.Textbox(),
reg_data_dir_input=gr.Textbox(),
output_dir_input=gr.Textbox(),
logging_dir_input=gr.Textbox(),
):
dummy_db_true = gr.Label(value=True, visible=False)
dummy_db_false = gr.Label(value=False, visible=False)
gr.Markdown(
'Train a custom model using kohya train network LoRA python code...'
)
(
button_open_config,
button_save_config,
button_save_as_config,
config_file_name,
button_load_config,
) = gradio_config()
(
pretrained_model_name_or_path,
v2,
v_parameterization,
save_model_as,
model_list,
) = gradio_source_model(
save_model_as_choices=[
'ckpt',
'safetensors',
]
)
with gr.Tab('Folders'):
with gr.Row():
train_data_dir = gr.Textbox(
label='Image folder',
placeholder='Folder where the training folders containing the images are located',
)
train_data_dir_folder = gr.Button('πŸ“‚', elem_id='open_folder_small')
train_data_dir_folder.click(
get_folder_path,
outputs=train_data_dir,
show_progress=False,
)
reg_data_dir = gr.Textbox(
label='Regularisation folder',
placeholder='(Optional) Folder where where the regularization folders containing the images are located',
)
reg_data_dir_folder = gr.Button('πŸ“‚', elem_id='open_folder_small')
reg_data_dir_folder.click(
get_folder_path,
outputs=reg_data_dir,
show_progress=False,
)
with gr.Row():
output_dir = gr.Textbox(
label='Output folder',
placeholder='Folder to output trained model',
)
output_dir_folder = gr.Button('πŸ“‚', elem_id='open_folder_small')
output_dir_folder.click(
get_folder_path,
outputs=output_dir,
show_progress=False,
)
logging_dir = gr.Textbox(
label='Logging folder',
placeholder='Optional: enable logging and output TensorBoard log to this folder',
)
logging_dir_folder = gr.Button('πŸ“‚', elem_id='open_folder_small')
logging_dir_folder.click(
get_folder_path,
outputs=logging_dir,
show_progress=False,
)
with gr.Row():
output_name = gr.Textbox(
label='Model output name',
placeholder='(Name of the model to output)',
value='last',
interactive=True,
)
training_comment = gr.Textbox(
label='Training comment',
placeholder='(Optional) Add training comment to be included in metadata',
interactive=True,
)
train_data_dir.change(
remove_doublequote,
inputs=[train_data_dir],
outputs=[train_data_dir],
)
reg_data_dir.change(
remove_doublequote,
inputs=[reg_data_dir],
outputs=[reg_data_dir],
)
output_dir.change(
remove_doublequote,
inputs=[output_dir],
outputs=[output_dir],
)
logging_dir.change(
remove_doublequote,
inputs=[logging_dir],
outputs=[logging_dir],
)
with gr.Tab('Training parameters'):
with gr.Row():
LoRA_type = gr.Dropdown(
label='LoRA type',
choices=[
'Kohya DyLoRA',
'Kohya LoCon',
# 'LoCon',
'LyCORIS/LoCon',
'LyCORIS/LoHa',
'Standard',
],
value='Standard',
)
lora_network_weights = gr.Textbox(
label='LoRA network weights',
placeholder='{Optional) Path to existing LoRA network weights to resume training',
)
lora_network_weights_file = gr.Button(
document_symbol, elem_id='open_folder_small'
)
lora_network_weights_file.click(
get_any_file_path,
inputs=[lora_network_weights],
outputs=lora_network_weights,
show_progress=False,
)
(
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
num_cpu_threads_per_process,
seed,
caption_extension,
cache_latents,
optimizer,
optimizer_args,
) = gradio_training(
learning_rate_value='0.0001',
lr_scheduler_value='cosine',
lr_warmup_value='10',
)
with gr.Row():
text_encoder_lr = gr.Textbox(
label='Text Encoder learning rate',
value='5e-5',
placeholder='Optional',
)
unet_lr = gr.Textbox(
label='Unet learning rate',
value='0.0001',
placeholder='Optional',
)
network_dim = gr.Slider(
minimum=1,
maximum=1024,
label='Network Rank (Dimension)',
value=8,
step=1,
interactive=True,
)
network_alpha = gr.Slider(
minimum=0.1,
maximum=1024,
label='Network Alpha',
value=1,
step=0.1,
interactive=True,
info='alpha for LoRA weight scaling',
)
with gr.Row(visible=False) as LoCon_row:
# locon= gr.Checkbox(label='Train a LoCon instead of a general LoRA (does not support v2 base models) (may not be able to some utilities now)', value=False)
conv_dim = gr.Slider(
minimum=1,
maximum=512,
value=1,
step=1,
label='Convolution Rank (Dimension)',
)
conv_alpha = gr.Slider(
minimum=0.1,
maximum=512,
value=1,
step=0.1,
label='Convolution Alpha',
)
with gr.Row(visible=False) as kohya_dylora:
unit = gr.Slider(
minimum=1,
maximum=64,
label='DyLoRA Unit',
value=1,
step=1,
interactive=True,
)
# Show of hide LoCon conv settings depending on LoRA type selection
def update_LoRA_settings(LoRA_type):
# Print a message when LoRA type is changed
print('LoRA type changed...')
# Determine if LoCon_row should be visible based on LoRA_type
LoCon_row = LoRA_type in {'LoCon', 'Kohya DyLoRA', 'Kohya LoCon', 'LyCORIS/LoHa', 'LyCORIS/LoCon'}
# Determine if LoRA_type_change should be visible based on LoRA_type
LoRA_type_change = LoRA_type in {'Standard', 'Kohya DyLoRA', 'Kohya LoCon'}
# Determine if kohya_dylora_visible should be visible based on LoRA_type
kohya_dylora_visible = LoRA_type == 'Kohya DyLoRA'
# Return the updated visibility settings for the groups
return (
gr.Group.update(visible=LoCon_row),
gr.Group.update(visible=LoRA_type_change),
gr.Group.update(visible=kohya_dylora_visible),
)
with gr.Row():
max_resolution = gr.Textbox(
label='Max resolution',
value='512,512',
placeholder='512,512',
info='The maximum resolution of dataset images. W,H',
)
stop_text_encoder_training = gr.Slider(
minimum=0,
maximum=100,
value=0,
step=1,
label='Stop text encoder training',
info='After what % of steps should the text encoder stop being trained. 0 = train for all steps.',
)
enable_bucket = gr.Checkbox(label='Enable buckets', value=True,
info='Allow non similar resolution dataset images to be trained on.',)
with gr.Accordion('Advanced Configuration', open=False):
with gr.Row(visible=True) as kohya_advanced_lora:
with gr.Tab(label='Weights'):
with gr.Row(visible=True):
down_lr_weight = gr.Textbox(
label='Down LR weights',
placeholder='(Optional) eg: 0,0,0,0,0,0,1,1,1,1,1,1',
info='Specify the learning rate weight of the down blocks of U-Net.'
)
mid_lr_weight = gr.Textbox(
label='Mid LR weights',
placeholder='(Optional) eg: 0.5',
info='Specify the learning rate weight of the mid block of U-Net.'
)
up_lr_weight = gr.Textbox(
label='Up LR weights',
placeholder='(Optional) eg: 0,0,0,0,0,0,1,1,1,1,1,1',
info='Specify the learning rate weight of the up blocks of U-Net. The same as down_lr_weight.'
)
block_lr_zero_threshold = gr.Textbox(
label='Blocks LR zero threshold',
placeholder='(Optional) eg: 0.1',
info='If the weight is not more than this value, the LoRA module is not created. The default is 0.'
)
with gr.Tab(label='Blocks'):
with gr.Row(visible=True):
block_dims = gr.Textbox(
label='Block dims',
placeholder='(Optional) eg: 2,2,2,2,4,4,4,4,6,6,6,6,8,6,6,6,6,4,4,4,4,2,2,2,2',
info='Specify the dim (rank) of each block. Specify 25 numbers.'
)
block_alphas = gr.Textbox(
label='Block alphas',
placeholder='(Optional) eg: 2,2,2,2,4,4,4,4,6,6,6,6,8,6,6,6,6,4,4,4,4,2,2,2,2',
info='Specify the alpha of each block. Specify 25 numbers as with block_dims. If omitted, the value of network_alpha is used.'
)
with gr.Tab(label='Conv'):
with gr.Row(visible=True):
conv_dims = gr.Textbox(
label='Conv dims',
placeholder='(Optional) eg: 2,2,2,2,4,4,4,4,6,6,6,6,8,6,6,6,6,4,4,4,4,2,2,2,2',
info='Expand LoRA to Conv2d 3x3 and specify the dim (rank) of each block. Specify 25 numbers.'
)
conv_alphas = gr.Textbox(
label='Conv alphas',
placeholder='(Optional) eg: 2,2,2,2,4,4,4,4,6,6,6,6,8,6,6,6,6,4,4,4,4,2,2,2,2',
info='Specify the alpha of each block when expanding LoRA to Conv2d 3x3. Specify 25 numbers. If omitted, the value of conv_alpha is used.'
)
with gr.Row():
no_token_padding = gr.Checkbox(
label='No token padding', value=False
)
gradient_accumulation_steps = gr.Number(
label='Gradient accumulate steps', value='1'
)
weighted_captions = gr.Checkbox(
label='Weighted captions', value=False, info='Enable weighted captions in the standard style (token:1.3). No commas inside parens, or shuffle/dropout may break the decoder.',
)
with gr.Row():
prior_loss_weight = gr.Number(
label='Prior loss weight', value=1.0
)
lr_scheduler_num_cycles = gr.Textbox(
label='LR number of cycles',
placeholder='(Optional) For Cosine with restart and polynomial only',
)
lr_scheduler_power = gr.Textbox(
label='LR power',
placeholder='(Optional) For Cosine with restart and polynomial only',
)
(
# use_8bit_adam,
xformers,
full_fp16,
gradient_checkpointing,
shuffle_caption,
color_aug,
flip_aug,
clip_skip,
mem_eff_attn,
save_state,
resume,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,
keep_tokens,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
caption_dropout_every_n_epochs,
caption_dropout_rate,
noise_offset,
additional_parameters,
vae_batch_size,
min_snr_gamma,
) = gradio_advanced_training()
color_aug.change(
color_aug_changed,
inputs=[color_aug],
outputs=[cache_latents],
)
(
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
) = sample_gradio_config()
LoRA_type.change(
update_LoRA_settings, inputs=[LoRA_type], outputs=[LoCon_row, kohya_advanced_lora, kohya_dylora]
)
with gr.Tab('Tools'):
gr.Markdown(
'This section provide Dreambooth tools to help setup your dataset...'
)
gradio_dreambooth_folder_creation_tab(
train_data_dir_input=train_data_dir,
reg_data_dir_input=reg_data_dir,
output_dir_input=output_dir,
logging_dir_input=logging_dir,
)
gradio_dataset_balancing_tab()
gradio_merge_lora_tab()
gradio_svd_merge_lora_tab()
gradio_resize_lora_tab()
gradio_verify_lora_tab()
button_run = gr.Button('Train model', variant='primary')
button_print = gr.Button('Print training command')
# Setup gradio tensorboard buttons
button_start_tensorboard, button_stop_tensorboard = gradio_tensorboard()
button_start_tensorboard.click(
start_tensorboard,
inputs=logging_dir,
show_progress=False,
)
button_stop_tensorboard.click(
stop_tensorboard,
show_progress=False,
)
settings_list = [
pretrained_model_name_or_path,
v2,
v_parameterization,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latents,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
no_token_padding,
stop_text_encoder_training,
# use_8bit_adam,
xformers,
save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
text_encoder_lr,
unet_lr,
network_dim,
lora_network_weights,
color_aug,
flip_aug,
clip_skip,
gradient_accumulation_steps,
mem_eff_attn,
output_name,
model_list,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,
network_alpha,
training_comment,
keep_tokens,
lr_scheduler_num_cycles,
lr_scheduler_power,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
noise_offset,
LoRA_type,
conv_dim,
conv_alpha,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
vae_batch_size,
min_snr_gamma,
down_lr_weight,mid_lr_weight,up_lr_weight,block_lr_zero_threshold,block_dims,block_alphas,conv_dims,conv_alphas,
weighted_captions, unit,
]
button_open_config.click(
open_configuration,
inputs=[dummy_db_true, config_file_name] + settings_list,
outputs=[config_file_name] + settings_list + [LoCon_row],
show_progress=False,
)
button_load_config.click(
open_configuration,
inputs=[dummy_db_false, config_file_name] + settings_list,
outputs=[config_file_name] + settings_list + [LoCon_row],
show_progress=False,
)
button_save_config.click(
save_configuration,
inputs=[dummy_db_false, config_file_name] + settings_list,
outputs=[config_file_name],
show_progress=False,
)
button_save_as_config.click(
save_configuration,
inputs=[dummy_db_true, config_file_name] + settings_list,
outputs=[config_file_name],
show_progress=False,
)
button_run.click(
train_model,
inputs=[dummy_db_false] + settings_list,
show_progress=False,
)
button_print.click(
train_model,
inputs=[dummy_db_true] + settings_list,
show_progress=False,
)
return (
train_data_dir,
reg_data_dir,
output_dir,
logging_dir,
)
def UI(**kwargs):
css = ''
if os.path.exists('./style.css'):
with open(os.path.join('./style.css'), 'r', encoding='utf8') as file:
print('Load CSS...')
css += file.read() + '\n'
interface = gr.Blocks(css=css)
with interface:
with gr.Tab('LoRA'):
(
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
logging_dir_input,
) = lora_tab()
with gr.Tab('Utilities'):
utilities_tab(
train_data_dir_input=train_data_dir_input,
reg_data_dir_input=reg_data_dir_input,
output_dir_input=output_dir_input,
logging_dir_input=logging_dir_input,
enable_copy_info_button=True,
)
# Show the interface
launch_kwargs = {}
if not kwargs.get('username', None) == '':
launch_kwargs['auth'] = (
kwargs.get('username', None),
kwargs.get('password', None),
)
if kwargs.get('server_port', 0) > 0:
launch_kwargs['server_port'] = kwargs.get('server_port', 0)
if kwargs.get('inbrowser', False):
launch_kwargs['inbrowser'] = kwargs.get('inbrowser', False)
if kwargs.get('listen', True):
launch_kwargs['server_name'] = '0.0.0.0'
print(launch_kwargs)
interface.launch(**launch_kwargs)
if __name__ == '__main__':
# torch.cuda.set_per_process_memory_fraction(0.48)
parser = argparse.ArgumentParser()
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
parser.add_argument(
'--server_port',
type=int,
default=0,
help='Port to run the server listener on',
)
parser.add_argument(
'--inbrowser', action='store_true', help='Open in browser'
)
parser.add_argument(
'--listen',
action='store_true',
help='Launch gradio with server name 0.0.0.0, allowing LAN access',
)
args = parser.parse_args()
UI(
username=args.username,
password=args.password,
inbrowser=args.inbrowser,
server_port=args.server_port,
)