File size: 10,149 Bytes
40e106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- f1
model-index:
- name: lora-roberta-large_6
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lora-roberta-large_6

This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7741
- Accuracy: 0.7210
- Prec: 0.6832
- Recall: 0.6609
- F1: 0.6698
- B Acc: 0.6609
- Micro F1: 0.7210
- Prec Joy: 0.8221
- Recall Joy: 0.8682
- F1 Joy: 0.8445
- Prec Anger: 0.6207
- Recall Anger: 0.6629
- F1 Anger: 0.6411
- Prec Disgust: 0.5579
- Recall Disgust: 0.4153
- F1 Disgust: 0.4762
- Prec Fear: 0.8032
- Recall Fear: 0.7111
- F1 Fear: 0.7543
- Prec Neutral: 0.7040
- Recall Neutral: 0.6528
- F1 Neutral: 0.6774
- Prec Sadness: 0.7279
- Recall Sadness: 0.7634
- F1 Sadness: 0.7452
- Prec Surprise: 0.5466
- Recall Surprise: 0.5525
- F1 Surprise: 0.5496

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Prec   | Recall | F1     | B Acc  | Micro F1 | Prec Joy | Recall Joy | F1 Joy | Prec Anger | Recall Anger | F1 Anger | Prec Disgust | Recall Disgust | F1 Disgust | Prec Fear | Recall Fear | F1 Fear | Prec Neutral | Recall Neutral | F1 Neutral | Prec Sadness | Recall Sadness | F1 Sadness | Prec Surprise | Recall Surprise | F1 Surprise |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:|:------:|:--------:|:--------:|:----------:|:------:|:----------:|:------------:|:--------:|:------------:|:--------------:|:----------:|:---------:|:-----------:|:-------:|:------------:|:--------------:|:----------:|:------------:|:--------------:|:----------:|:-------------:|:---------------:|:-----------:|
| 1.0422        | 0.5   | 338  | 1.0252          | 0.6383   | 0.6048 | 0.5558 | 0.5679 | 0.5558 | 0.6383   | 0.7408   | 0.8105     | 0.7741 | 0.6150     | 0.4301       | 0.5062   | 0.5039       | 0.4089         | 0.4515     | 0.6016    | 0.6311      | 0.616   | 0.5776       | 0.6623         | 0.6171     | 0.6128       | 0.6821         | 0.6456     | 0.5819        | 0.2654          | 0.3646      |
| 0.9507        | 1.0   | 676  | 0.9057          | 0.6720   | 0.6285 | 0.6125 | 0.6124 | 0.6125 | 0.6720   | 0.8439   | 0.7699     | 0.8052 | 0.6647     | 0.4487       | 0.5357   | 0.3456       | 0.5112         | 0.4124     | 0.6759    | 0.6967      | 0.6862  | 0.5849       | 0.7567         | 0.6598     | 0.7325       | 0.6496         | 0.6886     | 0.5519        | 0.4550          | 0.4988      |
| 0.857         | 1.5   | 1014 | 0.8438          | 0.6919   | 0.6551 | 0.6178 | 0.6317 | 0.6178 | 0.6919   | 0.7876   | 0.8508     | 0.8180 | 0.6563     | 0.5295       | 0.5861   | 0.5631       | 0.3706         | 0.4470     | 0.6896    | 0.7193      | 0.7041  | 0.6378       | 0.6808         | 0.6586     | 0.7049       | 0.7207         | 0.7127     | 0.5464        | 0.4529          | 0.4953      |
| 0.854         | 2.0   | 1352 | 0.8394          | 0.6889   | 0.6466 | 0.6265 | 0.6224 | 0.6265 | 0.6889   | 0.7776   | 0.8634     | 0.8183 | 0.5476     | 0.6742       | 0.6043   | 0.6183       | 0.2588         | 0.3649     | 0.6074    | 0.7766      | 0.6817  | 0.7014       | 0.5789         | 0.6343     | 0.7265       | 0.7213         | 0.7239     | 0.5475        | 0.5125          | 0.5294      |
| 0.816         | 2.5   | 1690 | 0.8139          | 0.7003   | 0.6535 | 0.6491 | 0.6477 | 0.6491 | 0.7003   | 0.7870   | 0.8572     | 0.8206 | 0.6328     | 0.5392       | 0.5823   | 0.4318       | 0.5463         | 0.4824     | 0.7305    | 0.75        | 0.7401  | 0.6650       | 0.6688         | 0.6669     | 0.7220       | 0.7411         | 0.7314     | 0.6057        | 0.4410          | 0.5103      |
| 0.7876        | 3.0   | 2028 | 0.7993          | 0.7046   | 0.6800 | 0.6331 | 0.6435 | 0.6331 | 0.7046   | 0.8217   | 0.8347     | 0.8281 | 0.6518     | 0.5901       | 0.6194   | 0.6825       | 0.2748         | 0.3918     | 0.7182    | 0.7520      | 0.7347  | 0.6613       | 0.6825         | 0.6717     | 0.7181       | 0.7285         | 0.7233     | 0.5063        | 0.5688          | 0.5357      |
| 0.7702        | 3.51  | 2366 | 0.7760          | 0.7089   | 0.6819 | 0.6232 | 0.6415 | 0.6232 | 0.7089   | 0.8217   | 0.8508     | 0.8360 | 0.6257     | 0.6015       | 0.6134   | 0.5932       | 0.3355         | 0.4286     | 0.7407    | 0.7377      | 0.7392  | 0.6402       | 0.7273         | 0.6810     | 0.7131       | 0.7453         | 0.7289     | 0.6388        | 0.3640          | 0.4638      |
| 0.7555        | 4.01  | 2704 | 0.7814          | 0.7131   | 0.6807 | 0.6286 | 0.6449 | 0.6286 | 0.7131   | 0.8254   | 0.8469     | 0.8360 | 0.6161     | 0.6330       | 0.6244   | 0.5854       | 0.3067         | 0.4025     | 0.7382    | 0.7398      | 0.7390  | 0.6541       | 0.7225         | 0.6866     | 0.7254       | 0.7459         | 0.7355     | 0.6202        | 0.4052          | 0.4902      |
| 0.741         | 4.51  | 3042 | 0.7749          | 0.7109   | 0.6598 | 0.6501 | 0.6528 | 0.6501 | 0.7109   | 0.7999   | 0.8630     | 0.8303 | 0.6406     | 0.6095       | 0.6247   | 0.4922       | 0.4026         | 0.4429     | 0.6655    | 0.7828      | 0.7194  | 0.6733       | 0.6852         | 0.6792     | 0.7714       | 0.6948         | 0.7311     | 0.5754        | 0.5125          | 0.5421      |
| 0.7095        | 5.01  | 3380 | 0.7921          | 0.7098   | 0.6848 | 0.6314 | 0.6435 | 0.6314 | 0.7098   | 0.8150   | 0.8521     | 0.8331 | 0.6051     | 0.6492       | 0.6264   | 0.6585       | 0.2588         | 0.3716     | 0.7590    | 0.7357      | 0.7471  | 0.6878       | 0.6514         | 0.6691     | 0.6712       | 0.8025         | 0.7310     | 0.5970        | 0.4702          | 0.5261      |
| 0.682         | 5.51  | 3718 | 0.7824          | 0.7135   | 0.6527 | 0.6808 | 0.6634 | 0.6808 | 0.7135   | 0.8204   | 0.8595     | 0.8395 | 0.6605     | 0.5740       | 0.6142   | 0.4507       | 0.5847         | 0.5090     | 0.6404    | 0.8176      | 0.7183  | 0.6955       | 0.6541         | 0.6742     | 0.7398       | 0.7429         | 0.7414     | 0.5616        | 0.5330          | 0.5470      |
| 0.6866        | 6.01  | 4056 | 0.7794          | 0.7169   | 0.6916 | 0.6527 | 0.6648 | 0.6527 | 0.7169   | 0.7892   | 0.8817     | 0.8329 | 0.6514     | 0.6435       | 0.6474   | 0.6391       | 0.3450         | 0.4481     | 0.7964    | 0.7295      | 0.7615  | 0.7066       | 0.6306         | 0.6664     | 0.7380       | 0.7580         | 0.7478     | 0.5209        | 0.5807          | 0.5492      |
| 0.6675        | 6.51  | 4394 | 0.7683          | 0.7185   | 0.6741 | 0.6623 | 0.6666 | 0.6623 | 0.7185   | 0.8392   | 0.8479     | 0.8435 | 0.6157     | 0.6605       | 0.6373   | 0.5502       | 0.4377         | 0.4875     | 0.7325    | 0.7520      | 0.7422  | 0.6869       | 0.6719         | 0.6793     | 0.7151       | 0.7676         | 0.7404     | 0.5793        | 0.4984          | 0.5358      |
| 0.6627        | 7.01  | 4732 | 0.7740          | 0.7128   | 0.6803 | 0.6512 | 0.6578 | 0.6512 | 0.7128   | 0.8170   | 0.8717     | 0.8435 | 0.5925     | 0.6912       | 0.6381   | 0.6258       | 0.3259         | 0.4286     | 0.7723    | 0.7439      | 0.7578  | 0.7017       | 0.6141         | 0.6550     | 0.7269       | 0.7580         | 0.7421     | 0.5263        | 0.5536          | 0.5396      |
| 0.649         | 7.51  | 5070 | 0.7704          | 0.7188   | 0.6870 | 0.6538 | 0.6644 | 0.6538 | 0.7188   | 0.8133   | 0.8679     | 0.8397 | 0.6294     | 0.6548       | 0.6418   | 0.6257       | 0.3578         | 0.4553     | 0.7530    | 0.7684      | 0.7606  | 0.6890       | 0.6596         | 0.6740     | 0.7144       | 0.7664         | 0.7395     | 0.5839        | 0.5016          | 0.5396      |
| 0.6506        | 8.01  | 5408 | 0.7820          | 0.7166   | 0.6728 | 0.6580 | 0.6631 | 0.6580 | 0.7166   | 0.7959   | 0.8824     | 0.8369 | 0.6361     | 0.6403       | 0.6382   | 0.4980       | 0.4026         | 0.4452     | 0.7887    | 0.7418      | 0.7645  | 0.7194       | 0.6196         | 0.6658     | 0.6969       | 0.7905         | 0.7408     | 0.5741        | 0.5287          | 0.5505      |
| 0.6054        | 8.51  | 5746 | 0.7668          | 0.7207   | 0.6778 | 0.6675 | 0.6717 | 0.6675 | 0.7207   | 0.8272   | 0.8640     | 0.8452 | 0.6337     | 0.6475       | 0.6405   | 0.5490       | 0.4473         | 0.4930     | 0.7557    | 0.7480      | 0.7518  | 0.6937       | 0.6555         | 0.6740     | 0.7328       | 0.7610         | 0.7466     | 0.5523        | 0.5493          | 0.5508      |
| 0.6044        | 9.01  | 6084 | 0.7678          | 0.7206   | 0.6729 | 0.6652 | 0.6679 | 0.6652 | 0.7206   | 0.8235   | 0.8634     | 0.8430 | 0.6180     | 0.6564       | 0.6366   | 0.5110       | 0.4441         | 0.4752     | 0.7216    | 0.7807      | 0.75    | 0.6861       | 0.6811         | 0.6836     | 0.7553       | 0.7249         | 0.7398     | 0.5949        | 0.5060          | 0.5468      |
| 0.571         | 9.51  | 6422 | 0.7741          | 0.7210   | 0.6832 | 0.6609 | 0.6698 | 0.6609 | 0.7210   | 0.8221   | 0.8682     | 0.8445 | 0.6207     | 0.6629       | 0.6411   | 0.5579       | 0.4153         | 0.4762     | 0.8032    | 0.7111      | 0.7543  | 0.7040       | 0.6528         | 0.6774     | 0.7279       | 0.7634         | 0.7452     | 0.5466        | 0.5525          | 0.5496      |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.11.0