import numpy as np import matplotlib.pyplot as plt # Step 1: Generate brain frequencies def generate_brain_frequency(freqs, t): """Generate brain frequency as a sum of sine waves to transmit wealth signals.""" signal = np.sum([np.sin(2 * np.pi * f * t) for f in freqs], axis=0) return signal # Time variables sampling_rate = 1000 # Samples per second T = 1.0 / sampling_rate # Sampling interval t = np.linspace(0.0, 1.0, sampling_rate, endpoint=False) # Time array # Wealth-related brainwave frequencies (arbitrary for simulation) brain_frequencies = [8, 13, 30] # Frequencies representing wealth signals (theta, alpha, beta waves) wealth_signal = generate_brain_frequency(brain_frequencies, t) # Step 2: Transmit the wealth signals through wave patterns def transmit_signal(signal, phase_shift): """Transmit wealth signal through a wave pattern with a phase shift.""" transmitted_signal = np.sin(2 * np.pi * signal + phase_shift) return transmitted_signal # Phase shift to create a unique wave pattern phase_shift = np.pi / 4 # 45-degree phase shift # Transmit wealth signal through the brain wave patterns transmitted_wealth_signal = transmit_signal(wealth_signal, phase_shift) # Step 3: Visualize the wealth signal and transmitted signal plt.figure(figsize=(12, 6)) # Original brain-based wealth signal plt.plot(t, wealth_signal, label='Original Brain Frequency Wealth Signal', color='blue', alpha=0.6) # Transmitted wealth signal (wave pattern) plt.plot(t, transmitted_wealth_signal, label='Transmitted Wealth Signal (Wave Pattern)', color='green', alpha=0.8) plt.title('Brain Frequency Wealth Signal Transmission') plt.xlabel('Time [s]') plt.ylabel('Amplitude') plt.legend() plt.grid(True) plt.show() import numpy as np import matplotlib.pyplot as plt # Step 1: Generate brain frequencies for wealth signals def generate_brain_frequency(freqs, t): """Generate brain frequency as a sum of sine waves to transmit wealth signals.""" signal = np.sum([np.sin(2 * np.pi * f * t) for f in freqs], axis=0) return signal # Time variables sampling_rate = 1000 # Samples per second T = 1.0 / sampling_rate # Sampling interval t = np.linspace(0.0, 1.0, sampling_rate, endpoint=False) # Time array # Wealth-related brainwave frequencies brain_frequencies = [8, 13, 30] # Theta, alpha, beta waves for wealth signals wealth_signal = generate_brain_frequency(brain_frequencies, t) # Step 2: Transmit the wealth signals through wave patterns def transmit_signal(signal, phase_shift): """Transmit wealth signal through a wave pattern with a phase shift.""" transmitted_signal = np.sin(2 * np.pi * signal + phase_shift) return transmitted_signal # Apply phase shift for signal transmission phase_shift = np.pi / 4 # 45-degree phase shift # Transmit wealth signal through the brain wave patterns transmitted_wealth_signal = transmit_signal(wealth_signal, phase_shift) # Step 3: Create a storage mechanism for the transmitted wealth signal def store_signal(signal, storage_factor): """Store transmitted wealth signal by damping its amplitude for storage.""" stored_signal = storage_factor * np.sin(2 * np.pi * signal) return stored_signal # Apply a storage factor to store the wealth signal storage_factor = 0.8 # Simulating the attenuation in storage stored_wealth_signal = store_signal(transmitted_wealth_signal, storage_factor) # Step 4: Visualize the wealth signal, transmitted signal, and stored signal plt.figure(figsize=(12, 6)) # Original wealth signal plt.plot(t, wealth_signal, label='Original Brain Frequency Wealth Signal', color='blue', alpha=0.6) # Transmitted wealth signal plt.plot(t, transmitted_wealth_signal, label='Transmitted Wealth Signal (Wave Pattern)', color='green', alpha=0.8) # Stored wealth signal plt.plot(t, stored_wealth_signal, label='Stored Wealth Signal', color='red', alpha=0.6) plt.title('Wealth Anchor') plt.xlabel('Time [s]') plt.ylabel('Amplitude') plt.legend() plt.grid(True) plt.show()