antoinelouis
commited on
Commit
•
5c985c5
1
Parent(s):
1ea6b9a
Update README.md
Browse files
README.md
CHANGED
@@ -1,84 +1,130 @@
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
language: fr
|
4 |
-
license:
|
5 |
datasets:
|
6 |
- unicamp-dl/mmarco
|
7 |
metrics:
|
8 |
- recall
|
9 |
tags:
|
10 |
-
-
|
11 |
-
- sentence-similarity
|
12 |
library_name: sentence-transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
# biencoder-mMiniLMv2-L6-mmarcoFR
|
16 |
|
17 |
-
This is a
|
18 |
|
19 |
## Usage
|
20 |
-
***
|
21 |
-
|
22 |
-
#### Sentence-Transformers
|
23 |
|
24 |
-
|
25 |
|
26 |
-
|
27 |
-
pip install -U sentence-transformers
|
28 |
-
```
|
29 |
|
30 |
-
Then you can use the model like this:
|
31 |
|
32 |
```python
|
33 |
from sentence_transformers import SentenceTransformer
|
34 |
-
|
|
|
|
|
35 |
|
36 |
model = SentenceTransformer('antoinelouis/biencoder-mMiniLMv2-L6-mmarcoFR')
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
39 |
```
|
40 |
|
41 |
-
####
|
42 |
|
43 |
-
|
44 |
|
45 |
```python
|
46 |
-
from
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
|
|
|
|
|
|
49 |
|
50 |
-
#Mean Pooling - Take attention mask into account for correct averaging
|
51 |
def mean_pooling(model_output, attention_mask):
|
|
|
52 |
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
53 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
54 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
55 |
|
56 |
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
# Load model from HuggingFace Hub
|
61 |
tokenizer = AutoTokenizer.from_pretrained('antoinelouis/biencoder-mMiniLMv2-L6-mmarcoFR')
|
62 |
model = AutoModel.from_pretrained('antoinelouis/biencoder-mMiniLMv2-L6-mmarcoFR')
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
# Compute token embeddings
|
68 |
with torch.no_grad():
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
76 |
```
|
77 |
|
78 |
-
## Evaluation
|
79 |
***
|
80 |
|
81 |
-
|
|
|
|
|
82 |
|
83 |
| | model | Vocab. | #Param. | Size | MRR@10 | NDCG@10 | MAP@10 | R@10 | R@100(↑) | R@500 |
|
84 |
|---:|:------------------------------------------------------------------------------------------------------------------------|:-------|--------:|------:|---------:|----------:|---------:|-------:|-----------:|--------:|
|
@@ -91,25 +137,22 @@ We evaluated our model on the smaller development set of mMARCO-fr, which consis
|
|
91 |
| 7 | [biencoder-electra-base-french-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-electra-base-french-mmarcoFR) | 🇫🇷 | 110M | 440MB | 23.38 | 27.97 | 22.91 | 43.50 | 68.96 | 81.61 |
|
92 |
| 8 | **biencoder-mMiniLMv2-L6-mmarcoFR** | 🇫🇷,99+ | 107M | 428MB | 22.29 | 26.57 | 21.80 | 41.25 | 66.78 | 79.83 |
|
93 |
|
94 |
-
## Training
|
95 |
***
|
96 |
|
97 |
-
|
98 |
|
99 |
-
|
100 |
|
101 |
-
|
102 |
|
103 |
-
|
104 |
|
105 |
-
|
|
|
|
|
|
|
106 |
|
107 |
-
|
108 |
-
- a corpus of 8.8M passages;
|
109 |
-
- a training set of ~533k queries (with at least one relevant passage);
|
110 |
-
- a development set of ~101k queries;
|
111 |
-
- a smaller dev set of 6,980 queries (which is actually used for evaluation in most published works).
|
112 |
-
Link: [https://ir-datasets.com/mmarco.html#mmarco/v2/fr/](https://ir-datasets.com/mmarco.html#mmarco/v2/fr/)
|
113 |
|
114 |
## Citation
|
115 |
|
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
language: fr
|
4 |
+
license: mit
|
5 |
datasets:
|
6 |
- unicamp-dl/mmarco
|
7 |
metrics:
|
8 |
- recall
|
9 |
tags:
|
10 |
+
- passage-retrieval
|
|
|
11 |
library_name: sentence-transformers
|
12 |
+
model-index:
|
13 |
+
- name: biencoder-mMiniLMv2-L6-mmarcoFR
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
type: sentence-similarity
|
17 |
+
name: Passage Retrieval
|
18 |
+
dataset:
|
19 |
+
type: unicamp-dl/mmarco
|
20 |
+
name: mMARCO-fr
|
21 |
+
config: french
|
22 |
+
split: validation
|
23 |
+
metrics:
|
24 |
+
- type: recall_at_500
|
25 |
+
name: Recall@500
|
26 |
+
value: 79.83
|
27 |
+
- type: recall_at_100
|
28 |
+
name: Recall@100
|
29 |
+
value: 66.78
|
30 |
+
- type: recall_at_10
|
31 |
+
name: Recall@10
|
32 |
+
value: 41.25
|
33 |
+
- type: map_at_10
|
34 |
+
name: MAP@10
|
35 |
+
value: 21.80
|
36 |
+
- type: ndcg_at_10
|
37 |
+
name: nDCG@10
|
38 |
+
value: 26.57
|
39 |
+
- type: mrr_at_10
|
40 |
+
name: MRR@10
|
41 |
+
value: 22.29
|
42 |
---
|
43 |
|
44 |
# biencoder-mMiniLMv2-L6-mmarcoFR
|
45 |
|
46 |
+
This is a dense single-vector bi-encoder model. It maps sentences and paragraphs to a 384 dimensional dense vector space and should be used for semantic search. The model was trained on the **French** portion of the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) retrieval dataset.
|
47 |
|
48 |
## Usage
|
|
|
|
|
|
|
49 |
|
50 |
+
Here are some examples for using the model with [Sentence-Transformers](#using-sentence-transformers), [FlagEmbedding](#using-flagembedding), or [Huggingface Transformers](#using-huggingface-transformers).
|
51 |
|
52 |
+
#### Using Sentence-Transformers
|
|
|
|
|
53 |
|
54 |
+
Start by installing the [library](https://www.SBERT.net): `pip install -U sentence-transformers`. Then, you can use the model like this:
|
55 |
|
56 |
```python
|
57 |
from sentence_transformers import SentenceTransformer
|
58 |
+
|
59 |
+
queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
|
60 |
+
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
|
61 |
|
62 |
model = SentenceTransformer('antoinelouis/biencoder-mMiniLMv2-L6-mmarcoFR')
|
63 |
+
q_embeddings = model.encode(queries, normalize_embeddings=True)
|
64 |
+
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
65 |
+
|
66 |
+
similarity = q_embeddings @ p_embeddings.T
|
67 |
+
print(similarity)
|
68 |
```
|
69 |
|
70 |
+
#### Using FlagEmbedding
|
71 |
|
72 |
+
Start by installing the [library](https://github.com/FlagOpen/FlagEmbedding/): `pip install -U FlagEmbedding`. Then, you can use the model like this:
|
73 |
|
74 |
```python
|
75 |
+
from FlagEmbedding import FlagModel
|
76 |
+
|
77 |
+
queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
|
78 |
+
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
|
79 |
+
|
80 |
+
model = FlagModel('antoinelouis/biencoder-mMiniLMv2-L6-mmarcoFR')
|
81 |
+
q_embeddings = model.encode(queries, normalize_embeddings=True)
|
82 |
+
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
83 |
+
|
84 |
+
similarity = q_embeddings @ p_embeddings.T
|
85 |
+
print(similarity)
|
86 |
+
```
|
87 |
+
|
88 |
+
#### Using Transformers
|
89 |
+
|
90 |
+
Start by installing the [library](https://huggingface.co/docs/transformers): `pip install -U transformers`. Then, you can use the model like this:
|
91 |
|
92 |
+
```python
|
93 |
+
from transformers import AutoTokenizer, AutoModel
|
94 |
+
from torch.nn.functional import normalize
|
95 |
|
|
|
96 |
def mean_pooling(model_output, attention_mask):
|
97 |
+
""" Perform mean pooling on-top of the contextualized word embeddings, while ignoring mask tokens in the mean computation."""
|
98 |
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
99 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
100 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
101 |
|
102 |
|
103 |
+
queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
|
104 |
+
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
|
105 |
|
|
|
106 |
tokenizer = AutoTokenizer.from_pretrained('antoinelouis/biencoder-mMiniLMv2-L6-mmarcoFR')
|
107 |
model = AutoModel.from_pretrained('antoinelouis/biencoder-mMiniLMv2-L6-mmarcoFR')
|
108 |
|
109 |
+
q_input = tokenizer(queries, padding=True, truncation=True, return_tensors='pt')
|
110 |
+
p_input = tokenizer(passages, padding=True, truncation=True, return_tensors='pt')
|
|
|
|
|
111 |
with torch.no_grad():
|
112 |
+
q_output = model(**encoded_queries)
|
113 |
+
p_output = model(**encoded_passages)
|
114 |
+
q_embeddings = mean_pooling(q_output, q_input['attention_mask'])
|
115 |
+
q_embedddings = normalize(q_embeddings, p=2, dim=1)
|
116 |
+
p_embeddings = mean_pooling(p_output, p_input['attention_mask'])
|
117 |
+
p_embedddings = normalize(p_embeddings, p=2, dim=1)
|
118 |
+
|
119 |
+
similarity = q_embeddings @ p_embeddings.T
|
120 |
+
print(similarity)
|
121 |
```
|
122 |
|
|
|
123 |
***
|
124 |
|
125 |
+
## Evaluation
|
126 |
+
|
127 |
+
We evaluate the model on the smaller development set of [mMARCO-fr](https://ir-datasets.com/mmarco.html#mmarco/v2/fr/), which consists of 6,980 queries for a corpus of 8.8M candidate passages. Below, we compare the model performance with other biencoder models fine-tuned on the same dataset. We report the mean reciprocal rank (MRR), normalized discounted cumulative gainand (NDCG), mean average precision (MAP), and recall at various cut-offs (R@k).
|
128 |
|
129 |
| | model | Vocab. | #Param. | Size | MRR@10 | NDCG@10 | MAP@10 | R@10 | R@100(↑) | R@500 |
|
130 |
|---:|:------------------------------------------------------------------------------------------------------------------------|:-------|--------:|------:|---------:|----------:|---------:|-------:|-----------:|--------:|
|
|
|
137 |
| 7 | [biencoder-electra-base-french-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-electra-base-french-mmarcoFR) | 🇫🇷 | 110M | 440MB | 23.38 | 27.97 | 22.91 | 43.50 | 68.96 | 81.61 |
|
138 |
| 8 | **biencoder-mMiniLMv2-L6-mmarcoFR** | 🇫🇷,99+ | 107M | 428MB | 22.29 | 26.57 | 21.80 | 41.25 | 66.78 | 79.83 |
|
139 |
|
|
|
140 |
***
|
141 |
|
142 |
+
## Training
|
143 |
|
144 |
+
#### Data
|
145 |
|
146 |
+
We use the French training samples from the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) dataset, a multilingual machine-translated version of MS MARCO that contains 8.8M passages and 539K training queries. We do not employ the BM25 netaives provided by the official dataset but instead sample harder negatives mined from 12 distinct dense retrievers, using the [msmarco-hard-negatives](https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives) distillation dataset.
|
147 |
|
148 |
+
#### Implementation
|
149 |
|
150 |
+
The model is initialized from the [nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large](https://huggingface.co/nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large)
|
151 |
+
checkpoint and optimized via the cross-entropy loss (as in [DPR](https://doi.org/10.48550/arXiv.2004.04906)) with a temperature of 0.05. It is fine-tuned on one 32GB
|
152 |
+
NVIDIA V100 GPU for 20 epochs (i.e., 65.7k steps) using the AdamW optimizer with a batch size of 152, a peak learning rate of 2e-5 with warm up along the first 500 steps
|
153 |
+
and linear scheduling. We set the maximum sequence lengths for both the questions and passages to 128 tokens. We use the cosine similarity to compute relevance scores.
|
154 |
|
155 |
+
***
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
## Citation
|
158 |
|