--- language: - eng license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-eng results: [] --- # speaker-segmentation-fine-tuned-callhome-eng This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set: - Loss: 0.4597 - Der: 0.1816 - False Alarm: 0.0595 - Missed Detection: 0.0708 - Confusion: 0.0513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.3871 | 1.0 | 362 | 0.4735 | 0.1913 | 0.0608 | 0.0744 | 0.0561 | | 0.4079 | 2.0 | 724 | 0.4605 | 0.1850 | 0.0626 | 0.0700 | 0.0524 | | 0.3871 | 3.0 | 1086 | 0.4603 | 0.1816 | 0.0581 | 0.0726 | 0.0509 | | 0.3642 | 4.0 | 1448 | 0.4624 | 0.1817 | 0.0575 | 0.0723 | 0.0519 | | 0.3421 | 5.0 | 1810 | 0.4597 | 0.1816 | 0.0595 | 0.0708 | 0.0513 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1