anzorq commited on
Commit
09fe49a
1 Parent(s): 2a19e2a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -194
README.md CHANGED
@@ -3,197 +3,75 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ # Parler-TTS Fine-tuned for Kabardian Language (Murat)
7
+
8
+ This model is a fine-tuned version of the Parler-TTS model trained on a dataset of Kabardian speech from the speaker Murat Sokhov.
9
+
10
+ ## Model Details:
11
+
12
+ * **Model:** ParlerTTSForConditionalGeneration
13
+ * **Base Model:** Parler-TTS mini v0.1
14
+ * **Training Data:** Kabardian speech dataset from "Murat" (anzorq/kbd_speech_murat)
15
+ * **Training Configuration:**
16
+ * `--train_dataset_name`: "anzorq/kbd_speech_murat"
17
+ * `--train_metadata_dataset_name`: "anzorq/kbd_speech_murat-tagged-for-parler-tts"
18
+ * `--num_train_epochs`: 4
19
+ * `--gradient_accumulation_steps`: 18
20
+ * `--gradient_checkpointing`: True
21
+ * `--per_device_train_batch_size`: 2
22
+ * `--learning_rate`: 0.00008
23
+ * `--lr_scheduler_type`: "constant_with_warmup"
24
+ * `--warmup_steps`: 50
25
+ * `--logging_steps`: 2
26
+ * `--freeze_text_encoder`: True
27
+ * `--dtype`: "float16"
28
+ * `--seed`: 456
29
+
30
+ ## Usage:
31
+
32
+ ### Installation:
33
+
34
+ ```bash
35
+ pip install git+https://github.com/huggingface/parler-tts.git
36
+ ```
37
+
38
+ ### Inference:
39
+
40
+ ```python
41
+ from parler_tts import ParlerTTSForConditionalGeneration
42
+ from transformers import AutoTokenizer
43
+ import torch
44
+ import soundfile as sf
45
+
46
+ device = "cuda" if torch.cuda.is_available() else "cpu"
47
+ torch_dtype = torch.float16 if device != "cpu" else torch.float32
48
+
49
+ model = ParlerTTSForConditionalGeneration.from_pretrained("anzorq/parler-tts-mini-kbd-Murat", torch_dtype=torch_dtype).to(device)
50
+ tokenizer = AutoTokenizer.from_pretrained("anzorq/parler-tts-mini-kbd-Murat")
51
+
52
+ prompt = "Уэшх нэужьым къиуа псы утхъуар, къэгубжьа хуэдэ, къыпэщӏэхуэр ирихьэхыну хьэзыру йожэх"
53
+ description = "Murat's voice is very clear, but it is very confined in terms of pacing and delivery"
54
+
55
+ # Simple transliteration since the original tokenizer used in Parler-TTS does not support Cyrillic symbols
56
+ def transliterate(text):
57
+ char_map = {
58
+ 'а': 'a', 'б': 'b', 'в': 'v', 'г': 'g', 'д': 'd', 'е': 'e', 'ж': 'zh', 'з': 'z', 'и': 'i', 'й': 'j',
59
+ 'к': 'k', 'л': 'l', 'м': 'm', 'н': 'n', 'о': 'o', 'п': 'p', 'р': 'r', 'с': 's', 'т': 't', 'у': 'u',
60
+ 'ф': 'f', 'х': 'x', 'ц': 'c', 'ч': 'ch', 'ш': 'sh', 'щ': 'sx', 'ъ': '2', 'ы': 'y', 'ь': '3', 'э': '4',
61
+ 'я': 'ya', 'ӏ': '1'
62
+ }
63
+ for cyrillic_char, latin_char in char_map.items():
64
+ text = text.replace(cyrillic_char, latin_char)
65
+ return text
66
+
67
+ transliterated_prompt = transliterate(prompt)
68
+
69
+ # Generate audio
70
+ input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
71
+ prompt_input_ids = tokenizer(transliterated_prompt, return_tensors="pt").input_ids.to(device)
72
+ generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids).to(torch.float32)
73
+ audio_arr = generation.cpu().numpy().squeeze()
74
+
75
+ # Save the audio to a file
76
+ sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate)
77
+ ```