File size: 5,273 Bytes
fe41e37 03d9181 fe41e37 03d9181 fe41e37 8b79b8c fe41e37 9507dff fe41e37 9507dff 6235368 7760f7e 6235368 fe41e37 adb46a6 fe41e37 9507dff fe41e37 9507dff fe41e37 9507dff fe41e37 03d9181 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
language:
- en
license: apache-2.0
datasets:
- appvoid/no-prompt-15k
pipeline_tag: text-generation
model-index:
- name: palmer-002
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 34.47
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=appvoid/palmer-002
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 59.41
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=appvoid/palmer-002
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.94
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=appvoid/palmer-002
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 37.06
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=appvoid/palmer-002
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.67
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=appvoid/palmer-002
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.21
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=appvoid/palmer-002
name: Open LLM Leaderboard
---
![palmer](https://huggingface.co/appvoid/palmer-001/resolve/main/new-logo.jpg)
# palmer
### a better base model
palmer is a series of ~1b parameters language models fine-tuned to be used as base models instead of using custom prompts for tasks. This means that it can be further fine-tuned on more data with custom prompts as usual or be used for downstream tasks as any base model you can get. The model has the best of both worlds: some "bias" to act as an assistant, but also the abillity to predict the next-word from its internet knowledge base. It's a 1.1b llama 2 model so you can use it with your favorite tools/frameworks.
### evaluation 🧪
note that this is a zero-shot setting as opposite to open llm leaderboard's few-shot evals
```
Model ARC_C HellaSwag PIQA Winogrande Average
tinyllama-2 | 0.2807 | 0.5463 | 0.7067 | 0.5683 | 0.5255 |
palmer-001 | 0.2807 | 0.5524 | 0.7106 | 0.5896 | 0.5333 |
babbage-001 | 0.2944 | 0.5448 | 0.7410 | 0.5935 | 0.5434 |
deacon-1b | 0.2944 | 0.5727 | 0.7040 | 0.5801 | 0.5434 |
tinyllama-2.5 | 0.3191 | 0.5896 | 0.7307 | 0.5872 | 0.5566 |
palmer-002 | 0.3242 | 0.5956 | 0.7345 | 0.5888 | 0.5607 |
babbage-002 | 0.3285 | 0.6380 | 0.7606 | 0.6085 | 0.5839 |
```
This model shows exceptional performance and as of now is the best tinyllama-size base model. Furthermore, this proves LIMA paper point and serves as a good open-source alternative to openai's `babbage-002`.
### training 🦾
Training took ~3.5 P100 gpu hours. It was trained on 15,000 gpt-4 shuffled samples. palmer was fine-tuned using lower learning rates ensuring it keeps as much general knowledge as possible.
### prompt 📝
```
no prompt 🚀
```
<a href="https://ko-fi.com/appvoid" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 48px !important;width: 180px !important; filter: invert(70%);" ></a>
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_appvoid__palmer-002)
| Metric |Value|
|---------------------------------|----:|
|Avg. |36.79|
|AI2 Reasoning Challenge (25-Shot)|34.47|
|HellaSwag (10-Shot) |59.41|
|MMLU (5-Shot) |25.94|
|TruthfulQA (0-shot) |37.06|
|Winogrande (5-shot) |62.67|
|GSM8k (5-shot) | 1.21|
|