|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- LunarLander-v2 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: A2C |
|
results: |
|
- metrics: |
|
- type: mean_reward |
|
value: 111.57 +/- 98.19 |
|
name: mean_reward |
|
task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: LunarLander-v2 |
|
type: LunarLander-v2 |
|
--- |
|
|
|
# **A2C** Agent playing **LunarLander-v2** |
|
This is a trained model of a **A2C** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). |
|
|
|
## Usage (with Stable-Baselines3) |
|
|
|
```python |
|
from huggingface_sb3 import load_from_hub |
|
from stable_baselines3 import A2C |
|
from stable_baselines3.common.env_util import make_vec_env |
|
from stable_baselines3.common.evaluation import evaluate_policy |
|
|
|
# Download checkpoint |
|
checkpoint = load_from_hub("araffin/a2c-LunarLander-v2", "a2c-LunarLander-v2.zip") |
|
# Load the model |
|
model = A2C.load(checkpoint) |
|
|
|
env = make_vec_env("LunarLander-v2", n_envs=1) |
|
|
|
# Evaluate |
|
print("Evaluating model") |
|
mean_reward, std_reward = evaluate_policy( |
|
model, |
|
env, |
|
n_eval_episodes=20, |
|
deterministic=True, |
|
) |
|
print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}") |
|
|
|
# Start a new episode |
|
obs = env.reset() |
|
|
|
try: |
|
while True: |
|
action, _states = model.predict(obs, deterministic=True) |
|
obs, rewards, dones, info = env.step(action) |
|
env.render() |
|
except KeyboardInterrupt: |
|
pass |
|
|
|
``` |
|
|
|
## Training code (with Stable-baselines3) |
|
```python |
|
from stable_baselines3 import A2C |
|
from stable_baselines3.common.env_util import make_vec_env |
|
from stable_baselines3.common.callbacks import EvalCallback |
|
|
|
# Create the environment |
|
env_id = "LunarLander-v2" |
|
n_envs = 8 |
|
env = make_vec_env(env_id, n_envs=n_envs) |
|
|
|
# Create the evaluation envs |
|
eval_envs = make_vec_env(env_id, n_envs=5) |
|
|
|
# Adjust evaluation interval depending on the number of envs |
|
eval_freq = int(1e5) |
|
eval_freq = max(eval_freq // n_envs, 1) |
|
|
|
# Create evaluation callback to save best model |
|
# and monitor agent performance |
|
eval_callback = EvalCallback( |
|
eval_envs, |
|
best_model_save_path="./logs/", |
|
eval_freq=eval_freq, |
|
n_eval_episodes=10, |
|
) |
|
|
|
|
|
# Instantiate the agent |
|
# Hyperparameters from https://github.com/DLR-RM/rl-baselines3-zoo |
|
linear_schedule = lambda progress_remaining: progress_remaining * 0.00083 |
|
model = A2C( |
|
"MlpPolicy", |
|
env, |
|
n_steps=5, |
|
gamma=0.995, |
|
learning_rate=linear_schedule, |
|
ent_coef=0.00001, |
|
verbose=1, |
|
) |
|
|
|
# Train the agent (you can kill it before using ctrl+c) |
|
try: |
|
model.learn(total_timesteps=int(5e5), callback=eval_callback) |
|
except KeyboardInterrupt: |
|
pass |
|
|
|
# Load best model |
|
model = A2C.load("logs/best_model.zip") |
|
``` |
|
|