File size: 59,109 Bytes
951254d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec3e0b9
951254d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
#!/usr/bin/python3
import os
import sys

HOME_DIR = os.environ.get('HOME', '/root')
MVANET_SOURCE_DIR = HOME_DIR + '/GITHUB/qianyu-dlut/MVANet'
finetuned_MVANet_model_path = MVANET_SOURCE_DIR + '/model/Model_80.pth'
pretrained_SwinB_model_path = MVANET_SOURCE_DIR + '/model/swin_base_patch4_window12_384_22kto1k.pth'

import math
import numpy as np
import cv2
import wget

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from torch.autograd import Variable
from torch import nn
from torchvision import transforms

from einops import rearrange

from timm.models import load_checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_

torch_device = 'cuda'
torch_dtype = torch.float16


def check_mkdir(dir_name):
    if not os.path.isdir(dir_name):
        os.makedirs(dir_name)


def SwinT(pretrained=True):
    model = SwinTransformer(embed_dim=96,
                            depths=[2, 2, 6, 2],
                            num_heads=[3, 6, 12, 24],
                            window_size=7)
    if pretrained is True:
        model.load_state_dict(torch.load(
            'data/backbone_ckpt/swin_tiny_patch4_window7_224.pth',
            map_location='cpu')['model'],
                              strict=False)

    return model


def SwinS(pretrained=True):
    model = SwinTransformer(embed_dim=96,
                            depths=[2, 2, 18, 2],
                            num_heads=[3, 6, 12, 24],
                            window_size=7)
    if pretrained is True:
        model.load_state_dict(torch.load(
            'data/backbone_ckpt/swin_small_patch4_window7_224.pth',
            map_location='cpu')['model'],
                              strict=False)

    return model


def SwinB(pretrained=True):
    model = SwinTransformer(embed_dim=128,
                            depths=[2, 2, 18, 2],
                            num_heads=[4, 8, 16, 32],
                            window_size=12)
    if pretrained is True:
        import os
        model.load_state_dict(torch.load(pretrained_SwinB_model_path,
                                         map_location='cpu')['model'],
                              strict=False)
    return model


def SwinL(pretrained=True):
    model = SwinTransformer(embed_dim=192,
                            depths=[2, 2, 18, 2],
                            num_heads=[6, 12, 24, 48],
                            window_size=12)
    if pretrained is True:
        model.load_state_dict(torch.load(
            'data/backbone_ckpt/swin_large_patch4_window12_384_22kto1k.pth',
            map_location='cpu')['model'],
                              strict=False)

    return model


def get_activation_fn(activation):
    """Return an activation function given a string"""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    raise RuntimeError(F"activation should be relu/gelu, not {activation}.")


def make_cbr(in_dim, out_dim):
    return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1),
                         nn.BatchNorm2d(out_dim), nn.PReLU())


def make_cbg(in_dim, out_dim):
    return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1),
                         nn.BatchNorm2d(out_dim), nn.GELU())


def rescale_to(x, scale_factor: float = 2, interpolation='nearest'):
    return F.interpolate(x, scale_factor=scale_factor, mode=interpolation)


def resize_as(x, y, interpolation='bilinear'):
    return F.interpolate(x, size=y.shape[-2:], mode=interpolation)


def image2patches(x):
    """b c (hg h) (wg w) -> (hg wg b) c h w"""
    x = rearrange(x, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2)
    return x


def patches2image(x):
    """(hg wg b) c h w -> b c (hg h) (wg w)"""
    x = rearrange(x, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2)
    return x


def window_partition(x, window_size):
    """
    Args:
        x: (B, H, W, C)
        window_size (int): window size

    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size,
               C)
    windows = x.permute(0, 1, 3, 2, 4,
                        5).contiguous().view(-1, window_size, window_size, C)
    return windows


def window_reverse(windows, window_size, H, W):
    """
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size
        H (int): Height of image
        W (int): Width of image

    Returns:
        x: (B, H, W, C)
    """
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.view(B, H // window_size, W // window_size, window_size,
                     window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


def mkdir_safe(out_path):
    if type(out_path) == str:
        if len(out_path) > 0:
            if not os.path.exists(out_path):
                os.mkdir(out_path)


def get_model_path():
    import folder_paths
    from folder_paths import models_dir

    path_file_model = models_dir
    mkdir_safe(out_path=path_file_model)

    path_file_model = os.path.join(path_file_model, 'MVANet')
    mkdir_safe(out_path=path_file_model)

    path_file_model = os.path.join(path_file_model, 'Model_80.pth')

    return path_file_model


def download_model(path):
    if not os.path.exists(path):
        wget.download(
            'https://huggingface.co/aravindhv10/Self-Correction-Human-Parsing/resolve/main/checkpoints/Model_80.pth',
            out=path)


def load_model(model_checkpoint_path):
    download_model(path=model_checkpoint_path)
    torch.cuda.set_device(0)

    net = inf_MVANet().to(dtype=torch_dtype, device=torch_device)

    pretrained_dict = torch.load(finetuned_MVANet_model_path,
                                 map_location=torch_device)

    model_dict = net.state_dict()
    pretrained_dict = {
        k: v
        for k, v in pretrained_dict.items() if k in model_dict
    }
    model_dict.update(pretrained_dict)
    net.load_state_dict(model_dict)
    net = net.to(dtype=torch_dtype, device=torch_device)
    net.eval()
    return net


def do_infer_tensor2tensor(img, net):

    img_transform = transforms.Compose(
        [transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

    h_, w_ = img.shape[1], img.shape[2]

    with torch.no_grad():

        img = rearrange(img, 'B H W C -> B C H W')

        img_resize = torch.nn.functional.interpolate(input=img,
                                                     size=(1024, 1024),
                                                     mode='bicubic',
                                                     antialias=True)

        img_var = img_transform(img_resize)
        img_var = Variable(img_var)
        img_var = img_var.to(dtype=torch_dtype, device=torch_device)

        mask = []

        mask.append(net(img_var))

        prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
        prediction = prediction.sigmoid()

        prediction = torch.nn.functional.interpolate(input=prediction,
                                                     size=(h_, w_),
                                                     mode='bicubic',
                                                     antialias=True)

        prediction = prediction.squeeze(0)
        prediction = prediction.clamp(0, 1)
        prediction = prediction.detach()
        prediction = prediction.to(dtype=torch.float32, device='cpu')

        return prediction


class Mlp(nn.Module):
    """ Multilayer perceptron."""

    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_layer=nn.GELU,
                 drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class WindowAttention(nn.Module):
    """ Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self,
                 dim,
                 window_size,
                 num_heads,
                 qkv_bias=True,
                 qk_scale=None,
                 attn_drop=0.,
                 proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
                        num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :,
                                         None] - coords_flatten[:,
                                                                None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(
            1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :,
                        0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index",
                             relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):
        """ Forward function.

        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        x = x.to(dtype=torch_dtype, device=torch_device)
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads,
                                  C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[
            2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[
            self.relative_position_index.view(-1)].view(
                self.window_size[0] * self.window_size[1],
                self.window_size[0] * self.window_size[1],
                -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(
            2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N,
                             N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)
        attn = attn.to(dtype=torch_dtype, device=torch_device)
        v = v.to(dtype=torch_dtype, device=torch_device)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class SwinTransformerBlock(nn.Module):
    """ Swin Transformer Block.

    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self,
                 dim,
                 num_heads,
                 window_size=7,
                 shift_size=0,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(dim,
                                    window_size=to_2tuple(self.window_size),
                                    num_heads=num_heads,
                                    qkv_bias=qkv_bias,
                                    qk_scale=qk_scale,
                                    attn_drop=attn_drop,
                                    proj_drop=drop)

        self.drop_path = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim,
                       hidden_features=mlp_hidden_dim,
                       act_layer=act_layer,
                       drop=drop)

        self.H = None
        self.W = None

    def forward(self, x, mask_matrix):
        """ Forward function.

        Args:
            x: Input feature, tensor size (B, H*W, C).
            H, W: Spatial resolution of the input feature.
            mask_matrix: Attention mask for cyclic shift.
        """
        B, L, C = x.shape
        H, W = self.H, self.W
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # pad feature maps to multiples of window size
        pad_l = pad_t = 0
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x,
                                   shifts=(-self.shift_size, -self.shift_size),
                                   dims=(1, 2))
            attn_mask = mask_matrix
        else:
            shifted_x = x
            attn_mask = None

        # partition windows
        x_windows = window_partition(
            shifted_x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(-1, self.window_size * self.window_size,
                                   C)  # nW*B, window_size*window_size, C

        # W-MSA/SW-MSA
        attn_windows = self.attn(
            x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size,
                                         self.window_size, C)
        shifted_x = window_reverse(attn_windows, self.window_size, Hp,
                                   Wp)  # B H' W' C

        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(shifted_x,
                           shifts=(self.shift_size, self.shift_size),
                           dims=(1, 2))
        else:
            x = shifted_x

        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x


class PatchMerging(nn.Module):
    """ Patch Merging Layer

    Args:
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x, H, W):
        """ Forward function.

        Args:
            x: Input feature, tensor size (B, H*W, C).
            H, W: Spatial resolution of the input feature.
        """
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        x = x.view(B, H, W, C)

        # padding
        pad_input = (H % 2 == 1) or (W % 2 == 1)
        if pad_input:
            x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
        x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C

        x = self.norm(x)
        x = self.reduction(x)

        return x


class BasicLayer(nn.Module):
    """ A basic Swin Transformer layer for one stage.

    Args:
        dim (int): Number of feature channels
        depth (int): Depths of this stage.
        num_heads (int): Number of attention head.
        window_size (int): Local window size. Default: 7.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self,
                 dim,
                 depth,
                 num_heads,
                 window_size=7,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 norm_layer=nn.LayerNorm,
                 downsample=None,
                 use_checkpoint=False):
        super().__init__()
        self.window_size = window_size
        self.shift_size = window_size // 2
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # build blocks
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(dim=dim,
                                 num_heads=num_heads,
                                 window_size=window_size,
                                 shift_size=0 if
                                 (i % 2 == 0) else window_size // 2,
                                 mlp_ratio=mlp_ratio,
                                 qkv_bias=qkv_bias,
                                 qk_scale=qk_scale,
                                 drop=drop,
                                 attn_drop=attn_drop,
                                 drop_path=drop_path[i] if isinstance(
                                     drop_path, list) else drop_path,
                                 norm_layer=norm_layer) for i in range(depth)
        ])

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def forward(self, x, H, W):
        """ Forward function.

        Args:
            x: Input feature, tensor size (B, H*W, C).
            H, W: Spatial resolution of the input feature.
        """

        # calculate attention mask for SW-MSA
        Hp = int(np.ceil(H / self.window_size)) * self.window_size
        Wp = int(np.ceil(W / self.window_size)) * self.window_size
        img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # 1 Hp Wp 1
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size,
                          -self.shift_size), slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size,
                          -self.shift_size), slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        mask_windows = window_partition(
            img_mask, self.window_size)  # nW, window_size, window_size, 1
        mask_windows = mask_windows.view(-1,
                                         self.window_size * self.window_size)
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
        attn_mask = attn_mask.masked_fill(attn_mask != 0,
                                          float(-100.0)).masked_fill(
                                              attn_mask == 0, float(0.0))

        for blk in self.blocks:
            blk.H, blk.W = H, W
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, attn_mask)
            else:
                x = blk(x, attn_mask)
        if self.downsample is not None:
            x_down = self.downsample(x, H, W)
            Wh, Ww = (H + 1) // 2, (W + 1) // 2
            return x, H, W, x_down, Wh, Ww
        else:
            return x, H, W, x, H, W


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding

    Args:
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self,
                 patch_size=4,
                 in_chans=3,
                 embed_dim=96,
                 norm_layer=None):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        self.patch_size = patch_size

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv2d(in_chans,
                              embed_dim,
                              kernel_size=patch_size,
                              stride=patch_size)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        """Forward function."""
        # padding
        _, _, H, W = x.size()
        if W % self.patch_size[1] != 0:
            x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
        if H % self.patch_size[0] != 0:
            x = F.pad(x,
                      (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))

        x = self.proj(x)  # B C Wh Ww
        if self.norm is not None:
            Wh, Ww = x.size(2), x.size(3)
            x = x.flatten(2).transpose(1, 2)
            x = self.norm(x)
            x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)

        return x


class SwinTransformer(nn.Module):
    """ Swin Transformer backbone.
        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
          https://arxiv.org/pdf/2103.14030

    Args:
        pretrain_img_size (int): Input image size for training the pretrained model,
            used in absolute postion embedding. Default 224.
        patch_size (int | tuple(int)): Patch size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        depths (tuple[int]): Depths of each Swin Transformer stage.
        num_heads (tuple[int]): Number of attention head of each stage.
        window_size (int): Window size. Default: 7.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
        drop_rate (float): Dropout rate.
        attn_drop_rate (float): Attention dropout rate. Default: 0.
        drop_path_rate (float): Stochastic depth rate. Default: 0.2.
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
        patch_norm (bool): If True, add normalization after patch embedding. Default: True.
        out_indices (Sequence[int]): Output from which stages.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters.
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self,
                 pretrain_img_size=224,
                 patch_size=4,
                 in_chans=3,
                 embed_dim=96,
                 depths=[2, 2, 6, 2],
                 num_heads=[3, 6, 12, 24],
                 window_size=7,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.2,
                 norm_layer=nn.LayerNorm,
                 ape=False,
                 patch_norm=True,
                 out_indices=(0, 1, 2, 3),
                 frozen_stages=-1,
                 use_checkpoint=False):
        super().__init__()

        self.pretrain_img_size = pretrain_img_size
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.out_indices = out_indices
        self.frozen_stages = frozen_stages

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)

        # absolute position embedding
        if self.ape:
            pretrain_img_size = to_2tuple(pretrain_img_size)
            patch_size = to_2tuple(patch_size)
            patches_resolution = [
                pretrain_img_size[0] // patch_size[0],
                pretrain_img_size[1] // patch_size[1]
            ]

            self.absolute_pos_embed = nn.Parameter(
                torch.zeros(1, embed_dim, patches_resolution[0],
                            patches_resolution[1]))
            trunc_normal_(self.absolute_pos_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
        ]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = BasicLayer(
                dim=int(embed_dim * 2**i_layer),
                depth=depths[i_layer],
                num_heads=num_heads[i_layer],
                window_size=window_size,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                norm_layer=norm_layer,
                downsample=PatchMerging if
                (i_layer < self.num_layers - 1) else None,
                use_checkpoint=use_checkpoint)
            self.layers.append(layer)

        num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
        self.num_features = num_features

        # add a norm layer for each output
        for i_layer in out_indices:
            layer = norm_layer(num_features[i_layer])
            layer_name = f'norm{i_layer}'
            self.add_module(layer_name, layer)

        self._freeze_stages()

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            self.patch_embed.eval()
            for param in self.patch_embed.parameters():
                param.requires_grad = False

        if self.frozen_stages >= 1 and self.ape:
            self.absolute_pos_embed.requires_grad = False

        if self.frozen_stages >= 2:
            self.pos_drop.eval()
            for i in range(0, self.frozen_stages - 1):
                m = self.layers[i]
                m.eval()
                for param in m.parameters():
                    param.requires_grad = False

    def init_weights(self, pretrained=None):
        """Initialize the weights in backbone.

        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """

        def _init_weights(m):
            if isinstance(m, nn.Linear):
                trunc_normal_(m.weight, std=.02)
                if isinstance(m, nn.Linear) and m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.LayerNorm):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1.0)

        if isinstance(pretrained, str):
            self.apply(_init_weights)
            load_checkpoint(self, pretrained, strict=False, logger=None)
        elif pretrained is None:
            self.apply(_init_weights)
        else:
            raise TypeError('pretrained must be a str or None')

    def forward(self, x):
        x = self.patch_embed(x)

        Wh, Ww = x.size(2), x.size(3)
        if self.ape:
            # interpolate the position embedding to the corresponding size
            absolute_pos_embed = F.interpolate(self.absolute_pos_embed,
                                               size=(Wh, Ww),
                                               mode='bicubic')
            x = (x + absolute_pos_embed)  # B Wh*Ww C

        outs = [x.contiguous()]
        x = x.flatten(2).transpose(1, 2)
        x = self.pos_drop(x)
        for i in range(self.num_layers):
            layer = self.layers[i]
            x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)

            if i in self.out_indices:
                norm_layer = getattr(self, f'norm{i}')
                x_out = norm_layer(x_out)

                out = x_out.view(-1, H, W,
                                 self.num_features[i]).permute(0, 3, 1,
                                                               2).contiguous()
                outs.append(out)

        return tuple(outs)

    def train(self, mode=True):
        """Convert the model into training mode while keep layers freezed."""
        super(SwinTransformer, self).train(mode)
        self._freeze_stages()


class PositionEmbeddingSine:

    def __init__(self,
                 num_pos_feats=64,
                 temperature=10000,
                 normalize=False,
                 scale=None):
        super().__init__()
        self.num_pos_feats = num_pos_feats
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale
        self.dim_t = torch.arange(0,
                                  self.num_pos_feats,
                                  dtype=torch_dtype,
                                  device=torch_device)

    def __call__(self, b, h, w):
        mask = torch.zeros([b, h, w], dtype=torch.bool, device=torch_device)
        assert mask is not None
        not_mask = ~mask
        y_embed = not_mask.cumsum(dim=1, dtype=torch_dtype)
        x_embed = not_mask.cumsum(dim=2, dtype=torch_dtype)
        if self.normalize:
            eps = 1e-6
            y_embed = ((y_embed - 0.5) / (y_embed[:, -1:, :] + eps) *
                       self.scale).to(device=torch_device, dtype=torch_dtype)
            x_embed = ((x_embed - 0.5) / (x_embed[:, :, -1:] + eps) *
                       self.scale).to(device=torch_device, dtype=torch_dtype)

        dim_t = self.temperature**(2 * (self.dim_t // 2) / self.num_pos_feats)

        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack(
            (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()),
            dim=4).flatten(3)
        pos_y = torch.stack(
            (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()),
            dim=4).flatten(3)
        return torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)


class MCLM(nn.Module):

    def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]):
        super(MCLM, self).__init__()
        self.attention = nn.ModuleList([
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
        ])

        self.linear1 = nn.Linear(d_model, d_model * 2)
        self.linear2 = nn.Linear(d_model * 2, d_model)
        self.linear3 = nn.Linear(d_model, d_model * 2)
        self.linear4 = nn.Linear(d_model * 2, d_model)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(0.1)
        self.dropout1 = nn.Dropout(0.1)
        self.dropout2 = nn.Dropout(0.1)
        self.activation = get_activation_fn('relu')
        self.pool_ratios = pool_ratios
        self.p_poses = []
        self.g_pos = None
        self.positional_encoding = PositionEmbeddingSine(
            num_pos_feats=d_model // 2, normalize=True)

    def forward(self, l, g):
        """
        l: 4,c,h,w
        g: 1,c,h,w
        """
        b, c, h, w = l.size()
        # 4,c,h,w -> 1,c,2h,2w
        concated_locs = rearrange(l,
                                  '(hg wg b) c h w -> b c (hg h) (wg w)',
                                  hg=2,
                                  wg=2)

        pools = []
        for pool_ratio in self.pool_ratios:
            # b,c,h,w
            tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
            pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw)
            pools.append(rearrange(pool, 'b c h w -> (h w) b c'))
            if self.g_pos is None:
                pos_emb = self.positional_encoding(pool.shape[0],
                                                   pool.shape[2],
                                                   pool.shape[3])
                pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c')
                self.p_poses.append(pos_emb)
        pools = torch.cat(pools, 0)
        if self.g_pos is None:
            self.p_poses = torch.cat(self.p_poses, dim=0)
            pos_emb = self.positional_encoding(g.shape[0], g.shape[2],
                                               g.shape[3])
            self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c')

        # attention between glb (q) & multisensory concated-locs (k,v)
        g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c')
        g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0](
            g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0])
        g_hw_b_c = self.norm1(g_hw_b_c)
        g_hw_b_c = g_hw_b_c + self.dropout2(
            self.linear2(
                self.dropout(self.activation(self.linear1(g_hw_b_c)).clone())))
        g_hw_b_c = self.norm2(g_hw_b_c)

        # attention between origin locs (q) & freashed glb (k,v)
        l_hw_b_c = rearrange(l, "b c h w -> (h w) b c")
        _g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w)
        _g_hw_b_c = rearrange(_g_hw_b_c,
                              "(ng h) (nw w) b c -> (h w) (ng nw b) c",
                              ng=2,
                              nw=2)
        outputs_re = []
        for i, (_l, _g) in enumerate(
                zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))):
            outputs_re.append(self.attention[i + 1](_l, _g,
                                                    _g)[0])  # (h w) 1 c
        outputs_re = torch.cat(outputs_re, 1)  # (h w) 4 c

        l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re)
        l_hw_b_c = self.norm1(l_hw_b_c)
        l_hw_b_c = l_hw_b_c + self.dropout2(
            self.linear4(
                self.dropout(self.activation(self.linear3(l_hw_b_c)).clone())))
        l_hw_b_c = self.norm2(l_hw_b_c)

        l = torch.cat((l_hw_b_c, g_hw_b_c), 1)  # hw,b(5),c
        return rearrange(l, "(h w) b c -> b c h w", h=h, w=w)  ## (5,c,h*w)


class inf_MCLM(nn.Module):

    def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]):
        super(inf_MCLM, self).__init__()
        self.attention = nn.ModuleList([
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
        ])

        self.linear1 = nn.Linear(d_model, d_model * 2)
        self.linear2 = nn.Linear(d_model * 2, d_model)
        self.linear3 = nn.Linear(d_model, d_model * 2)
        self.linear4 = nn.Linear(d_model * 2, d_model)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(0.1)
        self.dropout1 = nn.Dropout(0.1)
        self.dropout2 = nn.Dropout(0.1)
        self.activation = get_activation_fn('relu')
        self.pool_ratios = pool_ratios
        self.p_poses = []
        self.g_pos = None
        self.positional_encoding = PositionEmbeddingSine(
            num_pos_feats=d_model // 2, normalize=True)

    def forward(self, l, g):
        """
        l: 4,c,h,w
        g: 1,c,h,w
        """
        b, c, h, w = l.size()
        # 4,c,h,w -> 1,c,2h,2w
        concated_locs = rearrange(l,
                                  '(hg wg b) c h w -> b c (hg h) (wg w)',
                                  hg=2,
                                  wg=2)
        self.p_poses = []
        pools = []
        for pool_ratio in self.pool_ratios:
            # b,c,h,w
            tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
            pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw)
            pools.append(rearrange(pool, 'b c h w -> (h w) b c'))
            # if self.g_pos is None:
            pos_emb = self.positional_encoding(pool.shape[0], pool.shape[2],
                                               pool.shape[3])
            pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c')
            self.p_poses.append(pos_emb)
        pools = torch.cat(pools, 0)
        # if self.g_pos is None:
        self.p_poses = torch.cat(self.p_poses, dim=0)
        pos_emb = self.positional_encoding(g.shape[0], g.shape[2], g.shape[3])
        self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c')

        # attention between glb (q) & multisensory concated-locs (k,v)
        g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c')
        g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0](
            g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0])
        g_hw_b_c = self.norm1(g_hw_b_c)
        g_hw_b_c = g_hw_b_c + self.dropout2(
            self.linear2(
                self.dropout(self.activation(self.linear1(g_hw_b_c)).clone())))
        g_hw_b_c = self.norm2(g_hw_b_c)

        # attention between origin locs (q) & freashed glb (k,v)
        l_hw_b_c = rearrange(l, "b c h w -> (h w) b c")
        _g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w)
        _g_hw_b_c = rearrange(_g_hw_b_c,
                              "(ng h) (nw w) b c -> (h w) (ng nw b) c",
                              ng=2,
                              nw=2)
        outputs_re = []
        for i, (_l, _g) in enumerate(
                zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))):
            outputs_re.append(self.attention[i + 1](_l, _g,
                                                    _g)[0])  # (h w) 1 c
        outputs_re = torch.cat(outputs_re, 1)  # (h w) 4 c

        l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re)
        l_hw_b_c = self.norm1(l_hw_b_c)
        l_hw_b_c = l_hw_b_c + self.dropout2(
            self.linear4(
                self.dropout(self.activation(self.linear3(l_hw_b_c)).clone())))
        l_hw_b_c = self.norm2(l_hw_b_c)

        l = torch.cat((l_hw_b_c, g_hw_b_c), 1)  # hw,b(5),c
        return rearrange(l, "(h w) b c -> b c h w", h=h, w=w)  ## (5,c,h*w)


class MCRM(nn.Module):

    def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None):
        super(MCRM, self).__init__()
        self.attention = nn.ModuleList([
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
        ])

        self.linear3 = nn.Linear(d_model, d_model * 2)
        self.linear4 = nn.Linear(d_model * 2, d_model)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(0.1)
        self.dropout1 = nn.Dropout(0.1)
        self.dropout2 = nn.Dropout(0.1)
        self.sigmoid = nn.Sigmoid()
        self.activation = get_activation_fn('relu')
        self.sal_conv = nn.Conv2d(d_model, 1, 1)
        self.pool_ratios = pool_ratios
        self.positional_encoding = PositionEmbeddingSine(
            num_pos_feats=d_model // 2, normalize=True)

    def forward(self, x):
        b, c, h, w = x.size()
        loc, glb = x.split([4, 1], dim=0)  # 4,c,h,w; 1,c,h,w
        # b(4),c,h,w
        patched_glb = rearrange(glb,
                                'b c (hg h) (wg w) -> (hg wg b) c h w',
                                hg=2,
                                wg=2)

        # generate token attention map
        token_attention_map = self.sigmoid(self.sal_conv(glb))
        token_attention_map = F.interpolate(token_attention_map,
                                            size=patches2image(loc).shape[-2:],
                                            mode='nearest')
        loc = loc * rearrange(token_attention_map,
                              'b c (hg h) (wg w) -> (hg wg b) c h w',
                              hg=2,
                              wg=2)
        pools = []
        for pool_ratio in self.pool_ratios:
            tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
            pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw)
            pools.append(rearrange(pool,
                                   'nl c h w -> nl c (h w)'))  # nl(4),c,hw
        # nl(4),c,nphw -> nl(4),nphw,1,c
        pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c")
        loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c')
        outputs = []
        for i, q in enumerate(
                loc_.unbind(dim=0)):  # traverse all local patches
            # np*hw,1,c
            v = pools[i]
            k = v
            outputs.append(self.attention[i](q, k, v)[0])
        outputs = torch.cat(outputs, 1)
        src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs)
        src = self.norm1(src)
        src = src + self.dropout2(
            self.linear4(
                self.dropout(self.activation(self.linear3(src)).clone())))
        src = self.norm2(src)

        src = src.permute(1, 2, 0).reshape(4, c, h, w)  # freshed loc
        glb = glb + F.interpolate(patches2image(src),
                                  size=glb.shape[-2:],
                                  mode='nearest')  # freshed glb
        return torch.cat((src, glb), 0), token_attention_map


class inf_MCRM(nn.Module):

    def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None):
        super(inf_MCRM, self).__init__()
        self.attention = nn.ModuleList([
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
            nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
        ])

        self.linear3 = nn.Linear(d_model, d_model * 2)
        self.linear4 = nn.Linear(d_model * 2, d_model)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(0.1)
        self.dropout1 = nn.Dropout(0.1)
        self.dropout2 = nn.Dropout(0.1)
        self.sigmoid = nn.Sigmoid()
        self.activation = get_activation_fn('relu')
        self.sal_conv = nn.Conv2d(d_model, 1, 1)
        self.pool_ratios = pool_ratios
        self.positional_encoding = PositionEmbeddingSine(
            num_pos_feats=d_model // 2, normalize=True)

    def forward(self, x):
        b, c, h, w = x.size()
        loc, glb = x.split([4, 1], dim=0)  # 4,c,h,w; 1,c,h,w
        # b(4),c,h,w
        patched_glb = rearrange(glb,
                                'b c (hg h) (wg w) -> (hg wg b) c h w',
                                hg=2,
                                wg=2)

        # generate token attention map
        token_attention_map = self.sigmoid(self.sal_conv(glb))
        token_attention_map = F.interpolate(token_attention_map,
                                            size=patches2image(loc).shape[-2:],
                                            mode='nearest')
        loc = loc * rearrange(token_attention_map,
                              'b c (hg h) (wg w) -> (hg wg b) c h w',
                              hg=2,
                              wg=2)
        pools = []
        for pool_ratio in self.pool_ratios:
            tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
            pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw)
            pools.append(rearrange(pool,
                                   'nl c h w -> nl c (h w)'))  # nl(4),c,hw
        # nl(4),c,nphw -> nl(4),nphw,1,c
        pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c")
        loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c')
        outputs = []
        for i, q in enumerate(
                loc_.unbind(dim=0)):  # traverse all local patches
            # np*hw,1,c
            v = pools[i]
            k = v
            outputs.append(self.attention[i](q, k, v)[0])
        outputs = torch.cat(outputs, 1)
        src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs)
        src = self.norm1(src)
        src = src + self.dropout2(
            self.linear4(
                self.dropout(self.activation(self.linear3(src)).clone())))
        src = self.norm2(src)

        src = src.permute(1, 2, 0).reshape(4, c, h, w)  # freshed loc
        glb = glb + F.interpolate(patches2image(src),
                                  size=glb.shape[-2:],
                                  mode='nearest')  # freshed glb
        return torch.cat((src, glb), 0)


# model for single-scale training
class MVANet(nn.Module):

    def __init__(self):
        super().__init__()
        self.backbone = SwinB(pretrained=True)
        emb_dim = 128
        self.sideout5 = nn.Sequential(
            nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
        self.sideout4 = nn.Sequential(
            nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
        self.sideout3 = nn.Sequential(
            nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
        self.sideout2 = nn.Sequential(
            nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
        self.sideout1 = nn.Sequential(
            nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))

        self.output5 = make_cbr(1024, emb_dim)
        self.output4 = make_cbr(512, emb_dim)
        self.output3 = make_cbr(256, emb_dim)
        self.output2 = make_cbr(128, emb_dim)
        self.output1 = make_cbr(128, emb_dim)

        self.multifieldcrossatt = MCLM(emb_dim, 1, [1, 4, 8])
        self.conv1 = make_cbr(emb_dim, emb_dim)
        self.conv2 = make_cbr(emb_dim, emb_dim)
        self.conv3 = make_cbr(emb_dim, emb_dim)
        self.conv4 = make_cbr(emb_dim, emb_dim)
        self.dec_blk1 = MCRM(emb_dim, 1, [2, 4, 8])
        self.dec_blk2 = MCRM(emb_dim, 1, [2, 4, 8])
        self.dec_blk3 = MCRM(emb_dim, 1, [2, 4, 8])
        self.dec_blk4 = MCRM(emb_dim, 1, [2, 4, 8])

        self.insmask_head = nn.Sequential(
            nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1),
            nn.BatchNorm2d(384), nn.PReLU(),
            nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.BatchNorm2d(384),
            nn.PReLU(), nn.Conv2d(384, emb_dim, kernel_size=3, padding=1))

        self.shallow = nn.Sequential(
            nn.Conv2d(3, emb_dim, kernel_size=3, padding=1))
        self.upsample1 = make_cbg(emb_dim, emb_dim)
        self.upsample2 = make_cbg(emb_dim, emb_dim)
        self.output = nn.Sequential(
            nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))

        for m in self.modules():
            if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout):
                m.inplace = True

    def forward(self, x):
        x = x.to(dtype=torch_dtype, device=torch_device)
        shallow = self.shallow(x)
        glb = rescale_to(x, scale_factor=0.5, interpolation='bilinear')
        loc = image2patches(x)
        input = torch.cat((loc, glb), dim=0)
        feature = self.backbone(input)
        e5 = self.output5(feature[4])  # (5,128,16,16)
        e4 = self.output4(feature[3])  # (5,128,32,32)
        e3 = self.output3(feature[2])  # (5,128,64,64)
        e2 = self.output2(feature[1])  # (5,128,128,128)
        e1 = self.output1(feature[0])  # (5,128,128,128)
        loc_e5, glb_e5 = e5.split([4, 1], dim=0)
        e5 = self.multifieldcrossatt(loc_e5, glb_e5)  # (4,128,16,16)

        e4, tokenattmap4 = self.dec_blk4(e4 + resize_as(e5, e4))
        e4 = self.conv4(e4)
        e3, tokenattmap3 = self.dec_blk3(e3 + resize_as(e4, e3))
        e3 = self.conv3(e3)
        e2, tokenattmap2 = self.dec_blk2(e2 + resize_as(e3, e2))
        e2 = self.conv2(e2)
        e1, tokenattmap1 = self.dec_blk1(e1 + resize_as(e2, e1))
        e1 = self.conv1(e1)
        loc_e1, glb_e1 = e1.split([4, 1], dim=0)
        output1_cat = patches2image(loc_e1)  # (1,128,256,256)
        # add glb feat in
        output1_cat = output1_cat + resize_as(glb_e1, output1_cat)
        # merge
        final_output = self.insmask_head(output1_cat)  # (1,128,256,256)
        # shallow feature merge
        final_output = final_output + resize_as(shallow, final_output)
        final_output = self.upsample1(rescale_to(final_output))
        final_output = rescale_to(final_output +
                                  resize_as(shallow, final_output))
        final_output = self.upsample2(final_output)
        final_output = self.output(final_output)
        ####
        sideout5 = self.sideout5(e5).to(dtype=torch_dtype, device=torch_device)
        sideout4 = self.sideout4(e4)
        sideout3 = self.sideout3(e3)
        sideout2 = self.sideout2(e2)
        sideout1 = self.sideout1(e1)
        #######glb_sideouts ######
        glb5 = self.sideout5(glb_e5)
        glb4 = sideout4[-1, :, :, :].unsqueeze(0)
        glb3 = sideout3[-1, :, :, :].unsqueeze(0)
        glb2 = sideout2[-1, :, :, :].unsqueeze(0)
        glb1 = sideout1[-1, :, :, :].unsqueeze(0)
        ####### concat 4 to 1 #######
        sideout1 = patches2image(sideout1[:-1]).to(dtype=torch_dtype,
                                                   device=torch_device)
        sideout2 = patches2image(sideout2[:-1]).to(
            dtype=torch_dtype,
            device=torch_device)  ####(5,c,h,w) -> (1 c 2h,2w)
        sideout3 = patches2image(sideout3[:-1]).to(dtype=torch_dtype,
                                                   device=torch_device)
        sideout4 = patches2image(sideout4[:-1]).to(dtype=torch_dtype,
                                                   device=torch_device)
        sideout5 = patches2image(sideout5[:-1]).to(dtype=torch_dtype,
                                                   device=torch_device)
        if self.training:
            return sideout5, sideout4, sideout3, sideout2, sideout1, final_output, glb5, glb4, glb3, glb2, glb1, tokenattmap4, tokenattmap3, tokenattmap2, tokenattmap1
        else:
            return final_output


# model for multi-scale testing
class inf_MVANet(nn.Module):

    def __init__(self):
        super().__init__()
        # self.backbone = SwinB(pretrained=True)
        self.backbone = SwinB(pretrained=False)

        emb_dim = 128
        self.output5 = make_cbr(1024, emb_dim)
        self.output4 = make_cbr(512, emb_dim)
        self.output3 = make_cbr(256, emb_dim)
        self.output2 = make_cbr(128, emb_dim)
        self.output1 = make_cbr(128, emb_dim)

        self.multifieldcrossatt = inf_MCLM(emb_dim, 1, [1, 4, 8])
        self.conv1 = make_cbr(emb_dim, emb_dim)
        self.conv2 = make_cbr(emb_dim, emb_dim)
        self.conv3 = make_cbr(emb_dim, emb_dim)
        self.conv4 = make_cbr(emb_dim, emb_dim)
        self.dec_blk1 = inf_MCRM(emb_dim, 1, [2, 4, 8])
        self.dec_blk2 = inf_MCRM(emb_dim, 1, [2, 4, 8])
        self.dec_blk3 = inf_MCRM(emb_dim, 1, [2, 4, 8])
        self.dec_blk4 = inf_MCRM(emb_dim, 1, [2, 4, 8])

        self.insmask_head = nn.Sequential(
            nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1),
            nn.BatchNorm2d(384), nn.PReLU(),
            nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.BatchNorm2d(384),
            nn.PReLU(), nn.Conv2d(384, emb_dim, kernel_size=3, padding=1))

        self.shallow = nn.Sequential(
            nn.Conv2d(3, emb_dim, kernel_size=3, padding=1))
        self.upsample1 = make_cbg(emb_dim, emb_dim)
        self.upsample2 = make_cbg(emb_dim, emb_dim)
        self.output = nn.Sequential(
            nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))

        for m in self.modules():
            if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout):
                m.inplace = True

    def forward(self, x):
        shallow = self.shallow(x)
        glb = rescale_to(x, scale_factor=0.5, interpolation='bilinear')
        loc = image2patches(x)
        input = torch.cat((loc, glb), dim=0)
        feature = self.backbone(input)
        e5 = self.output5(feature[4])
        e4 = self.output4(feature[3])
        e3 = self.output3(feature[2])
        e2 = self.output2(feature[1])
        e1 = self.output1(feature[0])
        loc_e5, glb_e5 = e5.split([4, 1], dim=0)
        e5_cat = self.multifieldcrossatt(loc_e5, glb_e5)

        e4 = self.conv4(self.dec_blk4(e4 + resize_as(e5_cat, e4)))
        e3 = self.conv3(self.dec_blk3(e3 + resize_as(e4, e3)))
        e2 = self.conv2(self.dec_blk2(e2 + resize_as(e3, e2)))
        e1 = self.conv1(self.dec_blk1(e1 + resize_as(e2, e1)))
        loc_e1, glb_e1 = e1.split([4, 1], dim=0)
        # after decoder, concat loc features to a whole one, and merge
        output1_cat = patches2image(loc_e1)
        # add glb feat in
        output1_cat = output1_cat + resize_as(glb_e1, output1_cat)
        # merge
        final_output = self.insmask_head(output1_cat)
        # shallow feature merge
        final_output = final_output + resize_as(shallow, final_output)
        final_output = self.upsample1(rescale_to(final_output))
        final_output = rescale_to(final_output +
                                  resize_as(shallow, final_output))
        final_output = self.upsample2(final_output)
        final_output = self.output(final_output)
        return final_output


class load_MVANet_Model:

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {},
        }

    RETURN_TYPES = ("MVANet_Model", )
    FUNCTION = "test"
    CATEGORY = "MVANet"

    def test(self):
        return (load_model(get_model_path()), )


class run_MVANet_inference:

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE", ),
                "MVANet_Model": ("MVANet_Model", ),
            },
        }

    RETURN_TYPES = ("MASK", )
    FUNCTION = "test"
    CATEGORY = "MVANet"

    def test(
        self,
        image,
        MVANet_Model,
    ):
        ret = do_infer_tensor2tensor(img=image, net=MVANet_Model)

        return (ret, )


NODE_CLASS_MAPPINGS = {
    "load_MVANet_Model": load_MVANet_Model,
    "run_MVANet_inference": run_MVANet_inference
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "load_MVANet_Model": "load MVANet Model",
    "run_MVANet_inference": "run_MVANet_inference"
}