aravind-h-v's picture
self correcting human parsing repo copy
cf5e00a
raw
history blame
5.26 kB
import cv2
import os
import numpy as np
from collections import OrderedDict
from PIL import Image as PILImage
from utils.transforms import transform_parsing
LABELS = ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', \
'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', 'Left-leg',
'Right-leg', 'Left-shoe', 'Right-shoe']
# LABELS = ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs']
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
def get_confusion_matrix(gt_label, pred_label, num_classes):
"""
Calcute the confusion matrix by given label and pred
:param gt_label: the ground truth label
:param pred_label: the pred label
:param num_classes: the nunber of class
:return: the confusion matrix
"""
index = (gt_label * num_classes + pred_label).astype('int32')
label_count = np.bincount(index)
confusion_matrix = np.zeros((num_classes, num_classes))
for i_label in range(num_classes):
for i_pred_label in range(num_classes):
cur_index = i_label * num_classes + i_pred_label
if cur_index < len(label_count):
confusion_matrix[i_label, i_pred_label] = label_count[cur_index]
return confusion_matrix
def compute_mean_ioU(preds, scales, centers, num_classes, datadir, input_size=[473, 473], dataset='val'):
val_file = os.path.join(datadir, dataset + '_id.txt')
val_id = [i_id.strip() for i_id in open(val_file)]
confusion_matrix = np.zeros((num_classes, num_classes))
for i, pred_out in enumerate(preds):
im_name = val_id[i]
gt_path = os.path.join(datadir, dataset + '_segmentations', im_name + '.png')
gt = np.array(PILImage.open(gt_path))
h, w = gt.shape
s = scales[i]
c = centers[i]
pred = transform_parsing(pred_out, c, s, w, h, input_size)
gt = np.asarray(gt, dtype=np.int32)
pred = np.asarray(pred, dtype=np.int32)
ignore_index = gt != 255
gt = gt[ignore_index]
pred = pred[ignore_index]
confusion_matrix += get_confusion_matrix(gt, pred, num_classes)
pos = confusion_matrix.sum(1)
res = confusion_matrix.sum(0)
tp = np.diag(confusion_matrix)
pixel_accuracy = (tp.sum() / pos.sum()) * 100
mean_accuracy = ((tp / np.maximum(1.0, pos)).mean()) * 100
IoU_array = (tp / np.maximum(1.0, pos + res - tp))
IoU_array = IoU_array * 100
mean_IoU = IoU_array.mean()
print('Pixel accuracy: %f \n' % pixel_accuracy)
print('Mean accuracy: %f \n' % mean_accuracy)
print('Mean IU: %f \n' % mean_IoU)
name_value = []
for i, (label, iou) in enumerate(zip(LABELS, IoU_array)):
name_value.append((label, iou))
name_value.append(('Pixel accuracy', pixel_accuracy))
name_value.append(('Mean accuracy', mean_accuracy))
name_value.append(('Mean IU', mean_IoU))
name_value = OrderedDict(name_value)
return name_value
def compute_mean_ioU_file(preds_dir, num_classes, datadir, dataset='val'):
list_path = os.path.join(datadir, dataset + '_id.txt')
val_id = [i_id.strip() for i_id in open(list_path)]
confusion_matrix = np.zeros((num_classes, num_classes))
for i, im_name in enumerate(val_id):
gt_path = os.path.join(datadir, 'segmentations', im_name + '.png')
gt = cv2.imread(gt_path, cv2.IMREAD_GRAYSCALE)
pred_path = os.path.join(preds_dir, im_name + '.png')
pred = np.asarray(PILImage.open(pred_path))
gt = np.asarray(gt, dtype=np.int32)
pred = np.asarray(pred, dtype=np.int32)
ignore_index = gt != 255
gt = gt[ignore_index]
pred = pred[ignore_index]
confusion_matrix += get_confusion_matrix(gt, pred, num_classes)
pos = confusion_matrix.sum(1)
res = confusion_matrix.sum(0)
tp = np.diag(confusion_matrix)
pixel_accuracy = (tp.sum() / pos.sum()) * 100
mean_accuracy = ((tp / np.maximum(1.0, pos)).mean()) * 100
IoU_array = (tp / np.maximum(1.0, pos + res - tp))
IoU_array = IoU_array * 100
mean_IoU = IoU_array.mean()
print('Pixel accuracy: %f \n' % pixel_accuracy)
print('Mean accuracy: %f \n' % mean_accuracy)
print('Mean IU: %f \n' % mean_IoU)
name_value = []
for i, (label, iou) in enumerate(zip(LABELS, IoU_array)):
name_value.append((label, iou))
name_value.append(('Pixel accuracy', pixel_accuracy))
name_value.append(('Mean accuracy', mean_accuracy))
name_value.append(('Mean IU', mean_IoU))
name_value = OrderedDict(name_value)
return name_value