|
|
|
import cv2 |
|
import math |
|
import numpy as np |
|
import os |
|
import random |
|
import wget |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import init |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
|
|
from collections import OrderedDict |
|
from einops import rearrange, repeat |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
|
|
import folder_paths |
|
from folder_paths import models_dir |
|
|
|
|
|
|
|
def mkdir_safe(out_path): |
|
if type(out_path) == str: |
|
if len(out_path) > 0: |
|
if not os.path.exists(out_path): |
|
os.mkdir(out_path) |
|
|
|
|
|
def get_model_path(): |
|
import folder_paths |
|
from folder_paths import models_dir |
|
|
|
path_file_model = models_dir |
|
mkdir_safe(out_path=path_file_model) |
|
|
|
path_file_model = os.path.join(path_file_model, 'AEMatter') |
|
mkdir_safe(out_path=path_file_model) |
|
|
|
path_file_model = os.path.join(path_file_model, 'AEM_RWA.ckpt') |
|
|
|
return path_file_model |
|
|
|
|
|
def download_model(path): |
|
if not os.path.exists(path): |
|
wget.download( |
|
'https://huggingface.co/aravindhv10/Self-Correction-Human-Parsing/resolve/main/checkpoints/AEMatter/AEM_RWA.ckpt?download=true', |
|
out=path) |
|
|
|
|
|
def from_torch_image(image): |
|
image = image.cpu().numpy() * 255.0 |
|
image = np.clip(image, 0, 255).astype(np.uint8) |
|
return image |
|
|
|
|
|
def to_torch_image(image): |
|
image = image.astype(dtype=np.float32) |
|
image /= 255.0 |
|
image = torch.from_numpy(image) |
|
return image |
|
|
|
|
|
def window_partition(x, window_size): |
|
""" |
|
Args: |
|
x: (B, H, W, C) |
|
window_size (int): window size |
|
Returns: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
""" |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, |
|
C) |
|
windows = x.permute(0, 1, 3, 2, 4, |
|
5).contiguous().view(-1, window_size, window_size, C) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, window_size, H, W): |
|
""" |
|
Args: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
window_size (int): Window size |
|
H (int): Height of image |
|
W (int): Width of image |
|
Returns: |
|
x: (B, H, W, C) |
|
""" |
|
B = int(windows.shape[0] / (H * W / window_size / window_size)) |
|
x = windows.view(B, H // window_size, W // window_size, window_size, |
|
window_size, -1) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
return x |
|
|
|
|
|
def get_AEMatter_model(path_model_checkpoint): |
|
|
|
download_model(path=path_model_checkpoint) |
|
|
|
matmodel = AEMatter() |
|
matmodel.load_state_dict( |
|
torch.load(path_model_checkpoint, map_location='cpu')['model']) |
|
|
|
matmodel = matmodel.cuda() |
|
matmodel.eval() |
|
|
|
return matmodel |
|
|
|
|
|
def do_infer(rawimg, trimap, matmodel): |
|
trimap_nonp = trimap.copy() |
|
h, w, c = rawimg.shape |
|
nonph, nonpw, _ = rawimg.shape |
|
newh = (((h - 1) // 32) + 1) * 32 |
|
neww = (((w - 1) // 32) + 1) * 32 |
|
padh = newh - h |
|
padh1 = int(padh / 2) |
|
padh2 = padh - padh1 |
|
padw = neww - w |
|
padw1 = int(padw / 2) |
|
padw2 = padw - padw1 |
|
|
|
rawimg_pad = cv2.copyMakeBorder(rawimg, padh1, padh2, padw1, padw2, |
|
cv2.BORDER_REFLECT) |
|
|
|
trimap_pad = cv2.copyMakeBorder(trimap, padh1, padh2, padw1, padw2, |
|
cv2.BORDER_REFLECT) |
|
|
|
h_pad, w_pad, _ = rawimg_pad.shape |
|
tritemp = np.zeros([*trimap_pad.shape, 3], np.float32) |
|
tritemp[:, :, 0] = (trimap_pad == 0) |
|
tritemp[:, :, 1] = (trimap_pad == 128) |
|
tritemp[:, :, 2] = (trimap_pad == 255) |
|
tritempimgs = np.transpose(tritemp, (2, 0, 1)) |
|
tritempimgs = tritempimgs[np.newaxis, :, :, :] |
|
img = np.transpose(rawimg_pad, (2, 0, 1))[np.newaxis, ::-1, :, :] |
|
img = np.array(img, np.float32) |
|
img = img / 255. |
|
img = torch.from_numpy(img).cuda() |
|
tritempimgs = torch.from_numpy(tritempimgs).cuda() |
|
with torch.no_grad(): |
|
pred = matmodel(img, tritempimgs) |
|
pred = pred.detach().cpu().numpy()[0] |
|
pred = pred[:, padh1:padh1 + h, padw1:padw1 + w] |
|
preda = pred[ |
|
0:1, |
|
] * 255 |
|
preda = np.transpose(preda, (1, 2, 0)) |
|
preda = preda * (trimap_nonp[:, :, None] |
|
== 128) + (trimap_nonp[:, :, None] == 255) * 255 |
|
preda = np.array(preda, np.uint8) |
|
return preda |
|
|
|
|
|
def main(): |
|
ptrimap = '/home/asd/Desktop/demo/retriever_trimap.png' |
|
pimgs = '/home/asd/Desktop/demo/retriever_rgb.png' |
|
p_outs = 'alpha.png' |
|
|
|
matmodel = get_AEMatter_model( |
|
path_model_checkpoint='/home/asd/Desktop/AEM_RWA.ckpt') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rawimg = pimgs |
|
trimap = ptrimap |
|
rawimg = cv2.imread(rawimg, cv2.IMREAD_COLOR) |
|
trimap = cv2.imread(trimap, cv2.IMREAD_GRAYSCALE) |
|
trimap_nonp = trimap.copy() |
|
h, w, c = rawimg.shape |
|
nonph, nonpw, _ = rawimg.shape |
|
newh = (((h - 1) // 32) + 1) * 32 |
|
neww = (((w - 1) // 32) + 1) * 32 |
|
padh = newh - h |
|
padh1 = int(padh / 2) |
|
padh2 = padh - padh1 |
|
padw = neww - w |
|
padw1 = int(padw / 2) |
|
padw2 = padw - padw1 |
|
rawimg_pad = cv2.copyMakeBorder(rawimg, padh1, padh2, padw1, padw2, |
|
cv2.BORDER_REFLECT) |
|
trimap_pad = cv2.copyMakeBorder(trimap, padh1, padh2, padw1, padw2, |
|
cv2.BORDER_REFLECT) |
|
h_pad, w_pad, _ = rawimg_pad.shape |
|
tritemp = np.zeros([*trimap_pad.shape, 3], np.float32) |
|
tritemp[:, :, 0] = (trimap_pad == 0) |
|
tritemp[:, :, 1] = (trimap_pad == 128) |
|
tritemp[:, :, 2] = (trimap_pad == 255) |
|
tritempimgs = np.transpose(tritemp, (2, 0, 1)) |
|
tritempimgs = tritempimgs[np.newaxis, :, :, :] |
|
img = np.transpose(rawimg_pad, (2, 0, 1))[np.newaxis, ::-1, :, :] |
|
img = np.array(img, np.float32) |
|
img = img / 255. |
|
img = torch.from_numpy(img).cuda() |
|
tritempimgs = torch.from_numpy(tritempimgs).cuda() |
|
with torch.no_grad(): |
|
pred = matmodel(img, tritempimgs) |
|
pred = pred.detach().cpu().numpy()[0] |
|
pred = pred[:, padh1:padh1 + h, padw1:padw1 + w] |
|
preda = pred[ |
|
0:1, |
|
] * 255 |
|
preda = np.transpose(preda, (1, 2, 0)) |
|
preda = preda * (trimap_nonp[:, :, None] |
|
== 128) + (trimap_nonp[:, :, None] == 255) * 255 |
|
preda = np.array(preda, np.uint8) |
|
cv2.imwrite(p_outs, preda) |
|
|
|
|
|
|
|
class WindowAttention(nn.Module): |
|
""" Window based multi-head self attention (W-MSA) module with relative position bias. |
|
It supports both of shifted and non-shifted window. |
|
Args: |
|
dim (int): Number of input channels. |
|
window_size (tuple[int]): The height and width of the window. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
window_size, |
|
num_heads, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
attn_drop=0., |
|
proj_drop=0.): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.window_size = window_size |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
|
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), |
|
num_heads)) |
|
|
|
|
|
coords_h = torch.arange(self.window_size[0]) |
|
coords_w = torch.arange(self.window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, |
|
None] - coords_flatten[:, |
|
None, :] |
|
relative_coords = relative_coords.permute( |
|
1, 2, 0).contiguous() |
|
relative_coords[:, :, |
|
0] += self.window_size[0] - 1 |
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
relative_position_index = relative_coords.sum(-1) |
|
self.register_buffer("relative_position_index", |
|
relative_position_index) |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
trunc_normal_(self.relative_position_bias_table, std=.02) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, x, mask=None): |
|
""" Forward function. |
|
Args: |
|
x: input features with shape of (num_windows*B, N, C) |
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |
|
""" |
|
B_, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, |
|
C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[ |
|
2] |
|
|
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
relative_position_bias = self.relative_position_bias_table[ |
|
self.relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1], |
|
self.window_size[0] * self.window_size[1], |
|
-1) |
|
relative_position_bias = relative_position_bias.permute( |
|
2, 0, 1).contiguous() |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, |
|
N) + mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
attn = self.softmax(attn) |
|
else: |
|
attn = self.softmax(attn) |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class SwinTransformerBlock(nn.Module): |
|
""" Swin Transformer Block. |
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
shift_size (int): Shift size for SW-MSA. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
num_heads, |
|
window_size=7, |
|
shift_size=0, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.shift_size = shift_size |
|
self.mlp_ratio = mlp_ratio |
|
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = WindowAttention(dim, |
|
window_size=to_2tuple(self.window_size), |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
attn_drop=attn_drop, |
|
proj_drop=drop) |
|
|
|
self.drop_path = DropPath( |
|
drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop) |
|
|
|
self.H = None |
|
self.W = None |
|
|
|
def forward(self, x, mask_matrix): |
|
""" Forward function. |
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
mask_matrix: Attention mask for cyclic shift. |
|
""" |
|
B, L, C = x.shape |
|
H, W = self.H, self.W |
|
assert L == H * W, "input feature has wrong size" |
|
|
|
shortcut = x |
|
x = self.norm1(x) |
|
x = x.view(B, H, W, C) |
|
|
|
|
|
pad_l = pad_t = 0 |
|
pad_r = (self.window_size - W % self.window_size) % self.window_size |
|
pad_b = (self.window_size - H % self.window_size) % self.window_size |
|
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) |
|
_, Hp, Wp, _ = x.shape |
|
|
|
|
|
if self.shift_size > 0: |
|
shifted_x = torch.roll(x, |
|
shifts=(-self.shift_size, -self.shift_size), |
|
dims=(1, 2)) |
|
attn_mask = mask_matrix |
|
else: |
|
shifted_x = x |
|
attn_mask = None |
|
|
|
|
|
x_windows = window_partition( |
|
shifted_x, self.window_size) |
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, |
|
C) |
|
|
|
|
|
attn_windows = self.attn( |
|
x_windows, mask=attn_mask) |
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, |
|
self.window_size, C) |
|
shifted_x = window_reverse(attn_windows, self.window_size, Hp, |
|
Wp) |
|
|
|
|
|
if self.shift_size > 0: |
|
x = torch.roll(shifted_x, |
|
shifts=(self.shift_size, self.shift_size), |
|
dims=(1, 2)) |
|
else: |
|
x = shifted_x |
|
|
|
if pad_r > 0 or pad_b > 0: |
|
x = x[:, :H, :W, :].contiguous() |
|
|
|
x = x.view(B, H * W, C) |
|
|
|
|
|
x = shortcut + self.drop_path(x) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
return x |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
""" Patch Merging Layer |
|
Args: |
|
dim (int): Number of input channels. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, dim, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.dim = dim |
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) |
|
self.norm = norm_layer(4 * dim) |
|
|
|
def forward(self, x, H, W): |
|
""" Forward function. |
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
""" |
|
B, L, C = x.shape |
|
assert L == H * W, "input feature has wrong size" |
|
|
|
x = x.view(B, H, W, C) |
|
|
|
|
|
pad_input = (H % 2 == 1) or (W % 2 == 1) |
|
if pad_input: |
|
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) |
|
|
|
x0 = x[:, 0::2, 0::2, :] |
|
x1 = x[:, 1::2, 0::2, :] |
|
x2 = x[:, 0::2, 1::2, :] |
|
x3 = x[:, 1::2, 1::2, :] |
|
x = torch.cat([x0, x1, x2, x3], -1) |
|
x = x.view(B, -1, 4 * C) |
|
|
|
x = self.norm(x) |
|
x = self.reduction(x) |
|
|
|
return x |
|
|
|
|
|
class BasicLayer(nn.Module): |
|
""" A basic Swin Transformer layer for one stage. |
|
Args: |
|
dim (int): Number of feature channels |
|
depth (int): Depths of this stage. |
|
num_heads (int): Number of attention head. |
|
window_size (int): Local window size. Default: 7. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
depth, |
|
num_heads, |
|
window_size=7, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
norm_layer=nn.LayerNorm, |
|
downsample=None, |
|
use_checkpoint=False): |
|
|
|
super().__init__() |
|
self.window_size = window_size |
|
self.shift_size = window_size // 2 |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
SwinTransformerBlock(dim=dim, |
|
num_heads=num_heads, |
|
window_size=window_size, |
|
shift_size=0 if |
|
(i % 2 == 0) else window_size // 2, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path[i] if isinstance( |
|
drop_path, list) else drop_path, |
|
norm_layer=norm_layer) for i in range(depth) |
|
]) |
|
|
|
|
|
if downsample is not None: |
|
self.downsample = downsample(dim=dim, norm_layer=norm_layer) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x, H, W): |
|
""" Forward function. |
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
""" |
|
|
|
|
|
Hp = int(np.ceil(H / self.window_size)) * self.window_size |
|
Wp = int(np.ceil(W / self.window_size)) * self.window_size |
|
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) |
|
h_slices = (slice(0, -self.window_size), |
|
slice(-self.window_size, |
|
-self.shift_size), slice(-self.shift_size, None)) |
|
w_slices = (slice(0, -self.window_size), |
|
slice(-self.window_size, |
|
-self.shift_size), slice(-self.shift_size, None)) |
|
cnt = 0 |
|
for h in h_slices: |
|
for w in w_slices: |
|
img_mask[:, h, w, :] = cnt |
|
cnt += 1 |
|
|
|
mask_windows = window_partition( |
|
img_mask, self.window_size) |
|
|
|
mask_windows = mask_windows.view(-1, |
|
self.window_size * self.window_size) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze( |
|
2) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, |
|
float(-100.0)).masked_fill( |
|
attn_mask == 0, float(0.0)) |
|
|
|
for blk in self.blocks: |
|
blk.H, blk.W = H, W |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x, attn_mask) |
|
else: |
|
x = blk(x, attn_mask) |
|
|
|
if self.downsample is not None: |
|
x_down = self.downsample(x, H, W) |
|
Wh, Ww = (H + 1) // 2, (W + 1) // 2 |
|
return x, H, W, x_down, Wh, Ww |
|
else: |
|
return x, H, W, x, H, W |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
Args: |
|
patch_size (int): Patch token size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__(self, |
|
patch_size=4, |
|
in_chans=3, |
|
embed_dim=96, |
|
norm_layer=None): |
|
|
|
super().__init__() |
|
patch_size = to_2tuple(patch_size) |
|
self.patch_size = patch_size |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
self.proj = nn.Conv2d(in_chans, |
|
embed_dim, |
|
kernel_size=patch_size, |
|
stride=patch_size) |
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
|
|
_, _, H, W = x.size() |
|
if W % self.patch_size[1] != 0: |
|
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) |
|
if H % self.patch_size[0] != 0: |
|
x = F.pad(x, |
|
(0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) |
|
|
|
x = self.proj(x) |
|
if self.norm is not None: |
|
Wh, Ww = x.size(2), x.size(3) |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) |
|
|
|
return x |
|
|
|
|
|
class SwinTransformer(nn.Module): |
|
""" Swin Transformer backbone. |
|
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - |
|
https://arxiv.org/pdf/2103.14030 |
|
Args: |
|
pretrain_img_size (int): Input image size for training the pretrained model, |
|
used in absolute postion embedding. Default 224. |
|
patch_size (int | tuple(int)): Patch size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
depths (tuple[int]): Depths of each Swin Transformer stage. |
|
num_heads (tuple[int]): Number of attention head of each stage. |
|
window_size (int): Window size. Default: 7. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. |
|
drop_rate (float): Dropout rate. |
|
attn_drop_rate (float): Attention dropout rate. Default: 0. |
|
drop_path_rate (float): Stochastic depth rate. Default: 0.2. |
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. |
|
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False. |
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True. |
|
out_indices (Sequence[int]): Output from which stages. |
|
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). |
|
-1 means not freezing any parameters. |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
pretrain_img_size=224, |
|
patch_size=4, |
|
in_chans=3, |
|
embed_dim=96, |
|
depths=[2, 2, 6, 2], |
|
num_heads=[3, 6, 12, 24], |
|
window_size=7, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0.2, |
|
norm_layer=nn.LayerNorm, |
|
ape=False, |
|
patch_norm=True, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=-1, |
|
use_checkpoint=False): |
|
|
|
super().__init__() |
|
|
|
self.pretrain_img_size = pretrain_img_size |
|
self.num_layers = len(depths) |
|
self.embed_dim = embed_dim |
|
self.ape = ape |
|
self.patch_norm = patch_norm |
|
self.out_indices = out_indices |
|
self.frozen_stages = frozen_stages |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
|
|
|
if self.ape: |
|
pretrain_img_size = to_2tuple(pretrain_img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [ |
|
pretrain_img_size[0] // patch_size[0], |
|
pretrain_img_size[1] // patch_size[1] |
|
] |
|
|
|
self.absolute_pos_embed = nn.Parameter( |
|
torch.zeros(1, embed_dim, patches_resolution[0], |
|
patches_resolution[1])) |
|
trunc_normal_(self.absolute_pos_embed, std=.02) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
|
|
dpr = [ |
|
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) |
|
] |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
layer = BasicLayer( |
|
dim=int(embed_dim * 2**i_layer), |
|
depth=depths[i_layer], |
|
num_heads=num_heads[i_layer], |
|
window_size=window_size, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
norm_layer=norm_layer, |
|
downsample=PatchMerging if |
|
(i_layer < self.num_layers - 1) else None, |
|
use_checkpoint=use_checkpoint) |
|
self.layers.append(layer) |
|
|
|
num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)] |
|
self.num_features = num_features |
|
|
|
|
|
for i_layer in out_indices: |
|
layer = norm_layer(num_features[i_layer]) |
|
layer_name = f'norm{i_layer}' |
|
self.add_module(layer_name, layer) |
|
|
|
self._freeze_stages() |
|
|
|
def _freeze_stages(self): |
|
if self.frozen_stages >= 0: |
|
self.patch_embed.eval() |
|
for param in self.patch_embed.parameters(): |
|
param.requires_grad = False |
|
|
|
if self.frozen_stages >= 1 and self.ape: |
|
self.absolute_pos_embed.requires_grad = False |
|
|
|
if self.frozen_stages >= 2: |
|
self.pos_drop.eval() |
|
for i in range(0, self.frozen_stages - 1): |
|
m = self.layers[i] |
|
m.eval() |
|
for param in m.parameters(): |
|
param.requires_grad = False |
|
|
|
def init_weights(self, pretrained=None): |
|
"""Initialize the weights in backbone. |
|
Args: |
|
pretrained (str, optional): Path to pre-trained weights. |
|
Defaults to None. |
|
""" |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
x = self.patch_embed(x) |
|
|
|
Wh, Ww = x.size(2), x.size(3) |
|
if self.ape: |
|
|
|
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, |
|
size=(Wh, Ww), |
|
mode='bicubic') |
|
x = (x + absolute_pos_embed).flatten(2).transpose(1, |
|
2) |
|
else: |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.pos_drop(x) |
|
|
|
outs = [] |
|
for i in range(self.num_layers): |
|
layer = self.layers[i] |
|
|
|
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) |
|
|
|
if i in self.out_indices: |
|
norm_layer = getattr(self, f'norm{i}') |
|
x_out = norm_layer(x_out) |
|
|
|
out = x_out.view(-1, H, W, |
|
self.num_features[i]).permute(0, 3, 1, |
|
2).contiguous() |
|
outs.append(out) |
|
|
|
return tuple(outs) |
|
|
|
def train(self, mode=True): |
|
"""Convert the model into training mode while keep layers freezed.""" |
|
super(SwinTransformer, self).train(mode) |
|
self._freeze_stages() |
|
|
|
|
|
class Mlp(nn.Module): |
|
""" Multilayer perceptron.""" |
|
|
|
def __init__(self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class ResBlock(nn.Module): |
|
|
|
def __init__(self, inc, midc): |
|
super(ResBlock, self).__init__() |
|
self.conv1 = nn.Conv2d(inc, |
|
midc, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=True) |
|
self.gn1 = nn.GroupNorm(16, midc) |
|
self.conv2 = nn.Conv2d(midc, |
|
midc, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=True) |
|
self.gn2 = nn.GroupNorm(16, midc) |
|
self.conv3 = nn.Conv2d(midc, |
|
inc, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=True) |
|
self.relu = nn.LeakyReLU(0.1) |
|
|
|
def forward(self, x): |
|
x_ = x |
|
x = self.conv1(x) |
|
x = self.gn1(x) |
|
x = self.relu(x) |
|
x = self.conv2(x) |
|
x = self.gn2(x) |
|
x = self.relu(x) |
|
x = self.conv3(x) |
|
x = x + x_ |
|
x = self.relu(x) |
|
return x |
|
|
|
|
|
class AEALblock(nn.Module): |
|
|
|
def __init__(self, |
|
d_model, |
|
nhead, |
|
dim_feedforward=512, |
|
dropout=0.0, |
|
layer_norm_eps=1e-5, |
|
batch_first=True, |
|
norm_first=False, |
|
width=5): |
|
super(AEALblock, self).__init__() |
|
self.self_attn2 = nn.MultiheadAttention(d_model // 2, |
|
nhead // 2, |
|
dropout=dropout, |
|
batch_first=batch_first) |
|
self.self_attn1 = nn.MultiheadAttention(d_model // 2, |
|
nhead // 2, |
|
dropout=dropout, |
|
batch_first=batch_first) |
|
self.linear1 = nn.Linear(d_model, dim_feedforward) |
|
self.dropout = nn.Dropout(dropout) |
|
self.linear2 = nn.Linear(dim_feedforward, d_model) |
|
self.norm_first = norm_first |
|
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps) |
|
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.dropout2 = nn.Dropout(dropout) |
|
self.activation = nn.ReLU() |
|
self.width = width |
|
self.trans = nn.Sequential( |
|
nn.Conv2d(d_model + 512, d_model // 2, 1, 1, 0), |
|
ResBlock(d_model // 2, d_model // 4), |
|
nn.Conv2d(d_model // 2, d_model, 1, 1, 0)) |
|
self.gamma = nn.Parameter(torch.zeros(1)) |
|
|
|
def forward( |
|
self, |
|
src, |
|
feats, |
|
): |
|
src = self.gamma * self.trans(torch.cat([src, feats], 1)) + src |
|
b, c, h, w = src.shape |
|
x1 = src[:, 0:c // 2] |
|
x1_ = rearrange(x1, 'b c (h1 h2) w -> b c h1 h2 w', h2=self.width) |
|
x1_ = rearrange(x1_, 'b c h1 h2 w -> (b h1) (h2 w) c') |
|
x2 = src[:, c // 2:] |
|
x2_ = rearrange(x2, 'b c h (w1 w2) -> b c h w1 w2', w2=self.width) |
|
x2_ = rearrange(x2_, 'b c h w1 w2 -> (b w1) (h w2) c') |
|
x = rearrange(src, 'b c h w-> b (h w) c') |
|
x = self.norm1(x + self._sa_block(x1_, x2_, h, w)) |
|
x = self.norm2(x + self._ff_block(x)) |
|
x = rearrange(x, 'b (h w) c->b c h w', h=h, w=w) |
|
return x |
|
|
|
def _sa_block(self, x1, x2, h, w): |
|
x1 = self.self_attn1(x1, |
|
x1, |
|
x1, |
|
attn_mask=None, |
|
key_padding_mask=None, |
|
need_weights=False)[0] |
|
|
|
x2 = self.self_attn2(x2, |
|
x2, |
|
x2, |
|
attn_mask=None, |
|
key_padding_mask=None, |
|
need_weights=False)[0] |
|
|
|
x1 = rearrange(x1, |
|
'(b h1) (h2 w) c-> b (h1 h2 w) c', |
|
h2=self.width, |
|
h1=h // self.width) |
|
x2 = rearrange(x2, |
|
' (b w1) (h w2) c-> b (h w1 w2) c', |
|
w2=self.width, |
|
w1=w // self.width) |
|
x = torch.cat([x1, x2], dim=2) |
|
return self.dropout1(x) |
|
|
|
def _ff_block(self, x): |
|
x = self.linear2(self.dropout(self.activation(self.linear1(x)))) |
|
return self.dropout2(x) |
|
|
|
|
|
class AEMatter(nn.Module): |
|
|
|
def __init__(self): |
|
super(AEMatter, self).__init__() |
|
trans = SwinTransformer(pretrain_img_size=224, |
|
embed_dim=96, |
|
depths=[2, 2, 6, 2], |
|
num_heads=[3, 6, 12, 24], |
|
window_size=7, |
|
ape=False, |
|
drop_path_rate=0.2, |
|
patch_norm=True, |
|
use_checkpoint=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
trans.patch_embed.proj = nn.Conv2d(64, 96, 3, 2, 1) |
|
|
|
self.start_conv0 = nn.Sequential(nn.Conv2d(6, 48, 3, 1, 1), |
|
nn.PReLU(48)) |
|
|
|
self.start_conv = nn.Sequential(nn.Conv2d(48, 64, 3, 2, |
|
1), nn.PReLU(64), |
|
nn.Conv2d(64, 64, 3, 1, 1), |
|
nn.PReLU(64)) |
|
|
|
self.trans = trans |
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(in_channels=640 + 768, |
|
out_channels=256, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=True)) |
|
self.conv2 = nn.Sequential( |
|
nn.Conv2d(in_channels=256 + 384, |
|
out_channels=256, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=True), ) |
|
self.conv3 = nn.Sequential( |
|
nn.Conv2d(in_channels=256 + 192, |
|
out_channels=192, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=True), ) |
|
self.conv4 = nn.Sequential( |
|
nn.Conv2d(in_channels=192 + 96, |
|
out_channels=128, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=True), ) |
|
self.ctran0 = BasicLayer(256, 3, 8, 7, drop_path=0.09) |
|
self.ctran1 = BasicLayer(256, 3, 8, 7, drop_path=0.07) |
|
self.ctran2 = BasicLayer(192, 3, 6, 7, drop_path=0.05) |
|
self.ctran3 = BasicLayer(128, 3, 4, 7, drop_path=0.03) |
|
self.conv5 = nn.Sequential( |
|
nn.Conv2d(in_channels=192, |
|
out_channels=64, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=True), nn.PReLU(64), |
|
nn.Conv2d(in_channels=64, |
|
out_channels=64, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=True), nn.PReLU(64), |
|
nn.Conv2d(in_channels=64, |
|
out_channels=48, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=True), nn.PReLU(48)) |
|
self.convo = nn.Sequential( |
|
nn.Conv2d(in_channels=48 + 48 + 6, |
|
out_channels=32, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=True), nn.PReLU(32), |
|
nn.Conv2d(in_channels=32, |
|
out_channels=32, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=True), nn.PReLU(32), |
|
nn.Conv2d(in_channels=32, |
|
out_channels=1, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=True)) |
|
self.up = nn.Upsample(scale_factor=2, |
|
mode='bilinear', |
|
align_corners=False) |
|
self.upn = nn.Upsample(scale_factor=2, mode='nearest') |
|
self.apptrans = nn.Sequential( |
|
nn.Conv2d(256 + 384, 256, 1, 1, bias=True), ResBlock(256, 128), |
|
ResBlock(256, 128), nn.Conv2d(256, 512, 2, 2, bias=True), |
|
ResBlock(512, 128)) |
|
self.emb = nn.Sequential(nn.Conv2d(768, 640, 1, 1, 0), |
|
ResBlock(640, 160)) |
|
self.embdp = nn.Sequential(nn.Conv2d(640, 640, 1, 1, 0)) |
|
self.h2l = nn.Conv2d(768, 256, 1, 1, 0) |
|
self.width = 5 |
|
self.trans1 = AEALblock(d_model=640, |
|
nhead=20, |
|
dim_feedforward=2048, |
|
dropout=0.2, |
|
width=self.width) |
|
self.trans2 = AEALblock(d_model=640, |
|
nhead=20, |
|
dim_feedforward=2048, |
|
dropout=0.2, |
|
width=self.width) |
|
self.trans3 = AEALblock(d_model=640, |
|
nhead=20, |
|
dim_feedforward=2048, |
|
dropout=0.2, |
|
width=self.width) |
|
|
|
def aeal(self, x, sem): |
|
xe = self.emb(x) |
|
x_ = xe |
|
x_ = self.embdp(x_) |
|
b, c, h1, w1 = x_.shape |
|
bnew_ph = int(np.ceil(h1 / self.width) * self.width) - h1 |
|
bnew_pw = int(np.ceil(w1 / self.width) * self.width) - w1 |
|
newph1 = bnew_ph // 2 |
|
newph2 = bnew_ph - newph1 |
|
newpw1 = bnew_pw // 2 |
|
newpw2 = bnew_pw - newpw1 |
|
x_ = F.pad(x_, (newpw1, newpw2, newph1, newph2)) |
|
sem = F.pad(sem, (newpw1, newpw2, newph1, newph2)) |
|
x_ = self.trans1(x_, sem) |
|
x_ = self.trans2(x_, sem) |
|
x_ = self.trans3(x_, sem) |
|
x_ = x_[:, :, newph1:h1 + newph1, newpw1:w1 + newpw1] |
|
return x_ |
|
|
|
def forward(self, x, y): |
|
inputs = torch.cat((x, y), 1) |
|
x = self.start_conv0(inputs) |
|
x_ = self.start_conv(x) |
|
x1, x2, x3, x4 = self.trans(x_) |
|
x4h = self.h2l(x4) |
|
x3s = self.apptrans(torch.cat([x3, self.upn(x4h)], 1)) |
|
x4_ = self.aeal(x4, x3s) |
|
x4 = torch.cat((x4, x4_), 1) |
|
X4 = self.conv1(x4) |
|
wh, ww = X4.shape[2], X4.shape[3] |
|
X4 = rearrange(X4, 'b c h w -> b (h w) c') |
|
X4, _, _, _, _, _ = self.ctran0(X4, wh, ww) |
|
X4 = rearrange(X4, 'b (h w) c -> b c h w', h=wh, w=ww) |
|
X3 = self.up(X4) |
|
X3 = torch.cat((x3, X3), 1) |
|
X3 = self.conv2(X3) |
|
wh, ww = X3.shape[2], X3.shape[3] |
|
X3 = rearrange(X3, 'b c h w -> b (h w) c') |
|
X3, _, _, _, _, _ = self.ctran1(X3, wh, ww) |
|
X3 = rearrange(X3, 'b (h w) c -> b c h w', h=wh, w=ww) |
|
X2 = self.up(X3) |
|
X2 = torch.cat((x2, X2), 1) |
|
X2 = self.conv3(X2) |
|
wh, ww = X2.shape[2], X2.shape[3] |
|
X2 = rearrange(X2, 'b c h w -> b (h w) c') |
|
X2, _, _, _, _, _ = self.ctran2(X2, wh, ww) |
|
X2 = rearrange(X2, 'b (h w) c -> b c h w', h=wh, w=ww) |
|
X1 = self.up(X2) |
|
X1 = torch.cat((x1, X1), 1) |
|
X1 = self.conv4(X1) |
|
wh, ww = X1.shape[2], X1.shape[3] |
|
X1 = rearrange(X1, 'b c h w -> b (h w) c') |
|
X1, _, _, _, _, _ = self.ctran3(X1, wh, ww) |
|
X1 = rearrange(X1, 'b (h w) c -> b c h w', h=wh, w=ww) |
|
X0 = self.up(X1) |
|
X0 = torch.cat((x_, X0), 1) |
|
X0 = self.conv5(X0) |
|
X = self.up(X0) |
|
X = torch.cat((inputs, x, X), 1) |
|
alpha = self.convo(X) |
|
alpha = torch.clamp(alpha, min=0, max=1) |
|
return alpha |
|
|
|
|
|
class load_AEMatter_Model: |
|
|
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": {}, |
|
} |
|
|
|
RETURN_TYPES = ("AEMatter_Model", ) |
|
FUNCTION = "test" |
|
CATEGORY = "AEMatter" |
|
|
|
def test(self): |
|
return (get_AEMatter_model(get_model_path()), ) |
|
|
|
|
|
class run_AEMatter_inference: |
|
|
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE", ), |
|
"trimap": ("MASK", ), |
|
"AEMatter_Model": ("AEMatter_Model", ), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("MASK", ) |
|
FUNCTION = "test" |
|
CATEGORY = "AEMatter" |
|
|
|
def test( |
|
self, |
|
image, |
|
trimap, |
|
AEMatter_Model, |
|
): |
|
|
|
ret = [] |
|
batch_size = image.shape[0] |
|
|
|
for i in range(batch_size): |
|
tmp_i = from_torch_image(image[i]) |
|
tmp_m = from_torch_image(trimap[i]) |
|
tmp = do_infer(tmp_i, tmp_m, AEMatter_Model) |
|
ret.append(tmp) |
|
|
|
ret = to_torch_image(np.array(ret)) |
|
ret = ret.squeeze(-1) |
|
print(ret.shape) |
|
|
|
return ret |
|
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
'load_AEMatter_Model': load_AEMatter_Model, |
|
'run_AEMatter_inference': run_AEMatter_inference, |
|
} |
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
'load_AEMatter_Model': 'load_AEMatter_Model', |
|
'run_AEMatter_inference': 'run_AEMatter_inference', |
|
} |
|
|