aravindhv10's picture
Added AEMatter ComfyUI node
fb73232
#!/usr/bin/python3
import cv2
import math
import numpy as np
import os
import random
import wget
import torch
import torch.nn as nn
from torch.nn import init
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from collections import OrderedDict
from einops import rearrange, repeat
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
import folder_paths
from folder_paths import models_dir
#!/usr/bin/python3
def mkdir_safe(out_path):
if type(out_path) == str:
if len(out_path) > 0:
if not os.path.exists(out_path):
os.mkdir(out_path)
def get_model_path():
import folder_paths
from folder_paths import models_dir
path_file_model = models_dir
mkdir_safe(out_path=path_file_model)
path_file_model = os.path.join(path_file_model, 'AEMatter')
mkdir_safe(out_path=path_file_model)
path_file_model = os.path.join(path_file_model, 'AEM_RWA.ckpt')
return path_file_model
def download_model(path):
if not os.path.exists(path):
wget.download(
'https://huggingface.co/aravindhv10/Self-Correction-Human-Parsing/resolve/main/checkpoints/AEMatter/AEM_RWA.ckpt?download=true',
out=path)
def from_torch_image(image):
image = image.cpu().numpy() * 255.0
image = np.clip(image, 0, 255).astype(np.uint8)
return image
def to_torch_image(image):
image = image.astype(dtype=np.float32)
image /= 255.0
image = torch.from_numpy(image)
return image
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size,
C)
windows = x.permute(0, 1, 3, 2, 4,
5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size,
window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
def get_AEMatter_model(path_model_checkpoint):
download_model(path=path_model_checkpoint)
matmodel = AEMatter()
matmodel.load_state_dict(
torch.load(path_model_checkpoint, map_location='cpu')['model'])
matmodel = matmodel.cuda()
matmodel.eval()
return matmodel
def do_infer(rawimg, trimap, matmodel):
trimap_nonp = trimap.copy()
h, w, c = rawimg.shape
nonph, nonpw, _ = rawimg.shape
newh = (((h - 1) // 32) + 1) * 32
neww = (((w - 1) // 32) + 1) * 32
padh = newh - h
padh1 = int(padh / 2)
padh2 = padh - padh1
padw = neww - w
padw1 = int(padw / 2)
padw2 = padw - padw1
rawimg_pad = cv2.copyMakeBorder(rawimg, padh1, padh2, padw1, padw2,
cv2.BORDER_REFLECT)
trimap_pad = cv2.copyMakeBorder(trimap, padh1, padh2, padw1, padw2,
cv2.BORDER_REFLECT)
h_pad, w_pad, _ = rawimg_pad.shape
tritemp = np.zeros([*trimap_pad.shape, 3], np.float32)
tritemp[:, :, 0] = (trimap_pad == 0)
tritemp[:, :, 1] = (trimap_pad == 128)
tritemp[:, :, 2] = (trimap_pad == 255)
tritempimgs = np.transpose(tritemp, (2, 0, 1))
tritempimgs = tritempimgs[np.newaxis, :, :, :]
img = np.transpose(rawimg_pad, (2, 0, 1))[np.newaxis, ::-1, :, :]
img = np.array(img, np.float32)
img = img / 255.
img = torch.from_numpy(img).cuda()
tritempimgs = torch.from_numpy(tritempimgs).cuda()
with torch.no_grad():
pred = matmodel(img, tritempimgs)
pred = pred.detach().cpu().numpy()[0]
pred = pred[:, padh1:padh1 + h, padw1:padw1 + w]
preda = pred[
0:1,
] * 255
preda = np.transpose(preda, (1, 2, 0))
preda = preda * (trimap_nonp[:, :, None]
== 128) + (trimap_nonp[:, :, None] == 255) * 255
preda = np.array(preda, np.uint8)
return preda
def main():
ptrimap = '/home/asd/Desktop/demo/retriever_trimap.png'
pimgs = '/home/asd/Desktop/demo/retriever_rgb.png'
p_outs = 'alpha.png'
matmodel = get_AEMatter_model(
path_model_checkpoint='/home/asd/Desktop/AEM_RWA.ckpt')
# matmodel = AEMatter()
# matmodel.load_state_dict(
# torch.load('/home/asd/Desktop/AEM_RWA.ckpt',
# map_location='cpu')['model'])
# matmodel = matmodel.cuda()
# matmodel.eval()
rawimg = pimgs
trimap = ptrimap
rawimg = cv2.imread(rawimg, cv2.IMREAD_COLOR)
trimap = cv2.imread(trimap, cv2.IMREAD_GRAYSCALE)
trimap_nonp = trimap.copy()
h, w, c = rawimg.shape
nonph, nonpw, _ = rawimg.shape
newh = (((h - 1) // 32) + 1) * 32
neww = (((w - 1) // 32) + 1) * 32
padh = newh - h
padh1 = int(padh / 2)
padh2 = padh - padh1
padw = neww - w
padw1 = int(padw / 2)
padw2 = padw - padw1
rawimg_pad = cv2.copyMakeBorder(rawimg, padh1, padh2, padw1, padw2,
cv2.BORDER_REFLECT)
trimap_pad = cv2.copyMakeBorder(trimap, padh1, padh2, padw1, padw2,
cv2.BORDER_REFLECT)
h_pad, w_pad, _ = rawimg_pad.shape
tritemp = np.zeros([*trimap_pad.shape, 3], np.float32)
tritemp[:, :, 0] = (trimap_pad == 0)
tritemp[:, :, 1] = (trimap_pad == 128)
tritemp[:, :, 2] = (trimap_pad == 255)
tritempimgs = np.transpose(tritemp, (2, 0, 1))
tritempimgs = tritempimgs[np.newaxis, :, :, :]
img = np.transpose(rawimg_pad, (2, 0, 1))[np.newaxis, ::-1, :, :]
img = np.array(img, np.float32)
img = img / 255.
img = torch.from_numpy(img).cuda()
tritempimgs = torch.from_numpy(tritempimgs).cuda()
with torch.no_grad():
pred = matmodel(img, tritempimgs)
pred = pred.detach().cpu().numpy()[0]
pred = pred[:, padh1:padh1 + h, padw1:padw1 + w]
preda = pred[
0:1,
] * 255
preda = np.transpose(preda, (1, 2, 0))
preda = preda * (trimap_nonp[:, :, None]
== 128) + (trimap_nonp[:, :, None] == 255) * 255
preda = np.array(preda, np.uint8)
cv2.imwrite(p_outs, preda)
#!/usr/bin/python3
class WindowAttention(nn.Module):
""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self,
dim,
window_size,
num_heads,
qkv_bias=True,
qk_scale=None,
attn_drop=0.,
proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :,
None] - coords_flatten[:,
None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :,
0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index",
relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
""" Forward function.
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads,
C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[
2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
-1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N,
N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class SwinTransformerBlock(nn.Module):
""" Swin Transformer Block.
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self,
dim,
num_heads,
window_size=7,
shift_size=0,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(dim,
window_size=to_2tuple(self.window_size),
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
self.H = None
self.W = None
def forward(self, x, mask_matrix):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
mask_matrix: Attention mask for cyclic shift.
"""
B, L, C = x.shape
H, W = self.H, self.W
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# pad feature maps to multiples of window size
pad_l = pad_t = 0
pad_r = (self.window_size - W % self.window_size) % self.window_size
pad_b = (self.window_size - H % self.window_size) % self.window_size
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(x,
shifts=(-self.shift_size, -self.shift_size),
dims=(1, 2))
attn_mask = mask_matrix
else:
shifted_x = x
attn_mask = None
# partition windows
x_windows = window_partition(
shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size,
C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(
x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size,
self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, Hp,
Wp) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x,
shifts=(self.shift_size, self.shift_size),
dims=(1, 2))
else:
x = shifted_x
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.view(B, H * W, C)
# FFN
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchMerging(nn.Module):
""" Patch Merging Layer
Args:
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x, H, W):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
"""
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
x = x.view(B, H, W, C)
# padding
pad_input = (H % 2 == 1) or (W % 2 == 1)
if pad_input:
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of feature channels
depth (int): Depths of this stage.
num_heads (int): Number of attention head.
window_size (int): Local window size. Default: 7.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self,
dim,
depth,
num_heads,
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
norm_layer=nn.LayerNorm,
downsample=None,
use_checkpoint=False):
super().__init__()
self.window_size = window_size
self.shift_size = window_size // 2
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
SwinTransformerBlock(dim=dim,
num_heads=num_heads,
window_size=window_size,
shift_size=0 if
(i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(
drop_path, list) else drop_path,
norm_layer=norm_layer) for i in range(depth)
])
# patch merging layer
if downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x, H, W):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
"""
# print(x.shape,H,W)
# calculate attention mask for SW-MSA
Hp = int(np.ceil(H / self.window_size)) * self.window_size
Wp = int(np.ceil(W / self.window_size)) * self.window_size
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size,
-self.shift_size), slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size,
-self.shift_size), slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(
img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1,
self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(
2) # nW, ww window_size*window_size
attn_mask = attn_mask.masked_fill(attn_mask != 0,
float(-100.0)).masked_fill(
attn_mask == 0, float(0.0))
for blk in self.blocks:
blk.H, blk.W = H, W
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x, attn_mask)
else:
x = blk(x, attn_mask)
if self.downsample is not None:
x_down = self.downsample(x, H, W)
Wh, Ww = (H + 1) // 2, (W + 1) // 2
return x, H, W, x_down, Wh, Ww
else:
return x, H, W, x, H, W
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
Args:
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self,
patch_size=4,
in_chans=3,
embed_dim=96,
norm_layer=None):
super().__init__()
patch_size = to_2tuple(patch_size)
self.patch_size = patch_size
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2d(in_chans,
embed_dim,
kernel_size=patch_size,
stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
"""Forward function."""
# padding
_, _, H, W = x.size()
if W % self.patch_size[1] != 0:
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
if H % self.patch_size[0] != 0:
x = F.pad(x,
(0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
x = self.proj(x) # B C Wh Ww
if self.norm is not None:
Wh, Ww = x.size(2), x.size(3)
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
return x
class SwinTransformer(nn.Module):
""" Swin Transformer backbone.
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
https://arxiv.org/pdf/2103.14030
Args:
pretrain_img_size (int): Input image size for training the pretrained model,
used in absolute postion embedding. Default 224.
patch_size (int | tuple(int)): Patch size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
depths (tuple[int]): Depths of each Swin Transformer stage.
num_heads (tuple[int]): Number of attention head of each stage.
window_size (int): Window size. Default: 7.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
drop_rate (float): Dropout rate.
attn_drop_rate (float): Attention dropout rate. Default: 0.
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
out_indices (Sequence[int]): Output from which stages.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters.
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self,
pretrain_img_size=224,
patch_size=4,
in_chans=3,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.2,
norm_layer=nn.LayerNorm,
ape=False,
patch_norm=True,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
use_checkpoint=False):
super().__init__()
self.pretrain_img_size = pretrain_img_size
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.out_indices = out_indices
self.frozen_stages = frozen_stages
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
# absolute position embedding
if self.ape:
pretrain_img_size = to_2tuple(pretrain_img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [
pretrain_img_size[0] // patch_size[0],
pretrain_img_size[1] // patch_size[1]
]
self.absolute_pos_embed = nn.Parameter(
torch.zeros(1, embed_dim, patches_resolution[0],
patches_resolution[1]))
trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(
dim=int(embed_dim * 2**i_layer),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if
(i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint)
self.layers.append(layer)
num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
self.num_features = num_features
# add a norm layer for each output
for i_layer in out_indices:
layer = norm_layer(num_features[i_layer])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
self._freeze_stages()
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
if self.frozen_stages >= 1 and self.ape:
self.absolute_pos_embed.requires_grad = False
if self.frozen_stages >= 2:
self.pos_drop.eval()
for i in range(0, self.frozen_stages - 1):
m = self.layers[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
def init_weights(self, pretrained=None):
"""Initialize the weights in backbone.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
def forward(self, x):
"""Forward function."""
x = self.patch_embed(x)
Wh, Ww = x.size(2), x.size(3)
if self.ape:
# interpolate the position embedding to the corresponding size
absolute_pos_embed = F.interpolate(self.absolute_pos_embed,
size=(Wh, Ww),
mode='bicubic')
x = (x + absolute_pos_embed).flatten(2).transpose(1,
2) # B Wh*Ww C
else:
x = x.flatten(2).transpose(1, 2)
x = self.pos_drop(x)
outs = []
for i in range(self.num_layers):
layer = self.layers[i]
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
x_out = norm_layer(x_out)
out = x_out.view(-1, H, W,
self.num_features[i]).permute(0, 3, 1,
2).contiguous()
outs.append(out)
return tuple(outs)
def train(self, mode=True):
"""Convert the model into training mode while keep layers freezed."""
super(SwinTransformer, self).train(mode)
self._freeze_stages()
class Mlp(nn.Module):
""" Multilayer perceptron."""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class ResBlock(nn.Module):
def __init__(self, inc, midc):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv2d(inc,
midc,
kernel_size=1,
stride=1,
padding=0,
bias=True)
self.gn1 = nn.GroupNorm(16, midc)
self.conv2 = nn.Conv2d(midc,
midc,
kernel_size=3,
stride=1,
padding=1,
bias=True)
self.gn2 = nn.GroupNorm(16, midc)
self.conv3 = nn.Conv2d(midc,
inc,
kernel_size=1,
stride=1,
padding=0,
bias=True)
self.relu = nn.LeakyReLU(0.1)
def forward(self, x):
x_ = x
x = self.conv1(x)
x = self.gn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.gn2(x)
x = self.relu(x)
x = self.conv3(x)
x = x + x_
x = self.relu(x)
return x
class AEALblock(nn.Module):
def __init__(self,
d_model,
nhead,
dim_feedforward=512,
dropout=0.0,
layer_norm_eps=1e-5,
batch_first=True,
norm_first=False,
width=5):
super(AEALblock, self).__init__()
self.self_attn2 = nn.MultiheadAttention(d_model // 2,
nhead // 2,
dropout=dropout,
batch_first=batch_first)
self.self_attn1 = nn.MultiheadAttention(d_model // 2,
nhead // 2,
dropout=dropout,
batch_first=batch_first)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm_first = norm_first
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = nn.ReLU()
self.width = width
self.trans = nn.Sequential(
nn.Conv2d(d_model + 512, d_model // 2, 1, 1, 0),
ResBlock(d_model // 2, d_model // 4),
nn.Conv2d(d_model // 2, d_model, 1, 1, 0))
self.gamma = nn.Parameter(torch.zeros(1))
def forward(
self,
src,
feats,
):
src = self.gamma * self.trans(torch.cat([src, feats], 1)) + src
b, c, h, w = src.shape
x1 = src[:, 0:c // 2]
x1_ = rearrange(x1, 'b c (h1 h2) w -> b c h1 h2 w', h2=self.width)
x1_ = rearrange(x1_, 'b c h1 h2 w -> (b h1) (h2 w) c')
x2 = src[:, c // 2:]
x2_ = rearrange(x2, 'b c h (w1 w2) -> b c h w1 w2', w2=self.width)
x2_ = rearrange(x2_, 'b c h w1 w2 -> (b w1) (h w2) c')
x = rearrange(src, 'b c h w-> b (h w) c')
x = self.norm1(x + self._sa_block(x1_, x2_, h, w))
x = self.norm2(x + self._ff_block(x))
x = rearrange(x, 'b (h w) c->b c h w', h=h, w=w)
return x
def _sa_block(self, x1, x2, h, w):
x1 = self.self_attn1(x1,
x1,
x1,
attn_mask=None,
key_padding_mask=None,
need_weights=False)[0]
x2 = self.self_attn2(x2,
x2,
x2,
attn_mask=None,
key_padding_mask=None,
need_weights=False)[0]
x1 = rearrange(x1,
'(b h1) (h2 w) c-> b (h1 h2 w) c',
h2=self.width,
h1=h // self.width)
x2 = rearrange(x2,
' (b w1) (h w2) c-> b (h w1 w2) c',
w2=self.width,
w1=w // self.width)
x = torch.cat([x1, x2], dim=2)
return self.dropout1(x)
def _ff_block(self, x):
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
return self.dropout2(x)
class AEMatter(nn.Module):
def __init__(self):
super(AEMatter, self).__init__()
trans = SwinTransformer(pretrain_img_size=224,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
ape=False,
drop_path_rate=0.2,
patch_norm=True,
use_checkpoint=False)
# trans.load_state_dict(torch.load(
# '/home/asd/Desktop/swin_tiny_patch4_window7_224.pth',
# map_location="cpu")["model"],
# strict=False)
trans.patch_embed.proj = nn.Conv2d(64, 96, 3, 2, 1)
self.start_conv0 = nn.Sequential(nn.Conv2d(6, 48, 3, 1, 1),
nn.PReLU(48))
self.start_conv = nn.Sequential(nn.Conv2d(48, 64, 3, 2,
1), nn.PReLU(64),
nn.Conv2d(64, 64, 3, 1, 1),
nn.PReLU(64))
self.trans = trans
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=640 + 768,
out_channels=256,
kernel_size=1,
stride=1,
padding=0,
bias=True))
self.conv2 = nn.Sequential(
nn.Conv2d(in_channels=256 + 384,
out_channels=256,
kernel_size=1,
stride=1,
padding=0,
bias=True), )
self.conv3 = nn.Sequential(
nn.Conv2d(in_channels=256 + 192,
out_channels=192,
kernel_size=1,
stride=1,
padding=0,
bias=True), )
self.conv4 = nn.Sequential(
nn.Conv2d(in_channels=192 + 96,
out_channels=128,
kernel_size=1,
stride=1,
padding=0,
bias=True), )
self.ctran0 = BasicLayer(256, 3, 8, 7, drop_path=0.09)
self.ctran1 = BasicLayer(256, 3, 8, 7, drop_path=0.07)
self.ctran2 = BasicLayer(192, 3, 6, 7, drop_path=0.05)
self.ctran3 = BasicLayer(128, 3, 4, 7, drop_path=0.03)
self.conv5 = nn.Sequential(
nn.Conv2d(in_channels=192,
out_channels=64,
kernel_size=3,
stride=1,
padding=1,
bias=True), nn.PReLU(64),
nn.Conv2d(in_channels=64,
out_channels=64,
kernel_size=3,
stride=1,
padding=1,
bias=True), nn.PReLU(64),
nn.Conv2d(in_channels=64,
out_channels=48,
kernel_size=3,
stride=1,
padding=1,
bias=True), nn.PReLU(48))
self.convo = nn.Sequential(
nn.Conv2d(in_channels=48 + 48 + 6,
out_channels=32,
kernel_size=3,
stride=1,
padding=1,
bias=True), nn.PReLU(32),
nn.Conv2d(in_channels=32,
out_channels=32,
kernel_size=3,
stride=1,
padding=1,
bias=True), nn.PReLU(32),
nn.Conv2d(in_channels=32,
out_channels=1,
kernel_size=3,
stride=1,
padding=1,
bias=True))
self.up = nn.Upsample(scale_factor=2,
mode='bilinear',
align_corners=False)
self.upn = nn.Upsample(scale_factor=2, mode='nearest')
self.apptrans = nn.Sequential(
nn.Conv2d(256 + 384, 256, 1, 1, bias=True), ResBlock(256, 128),
ResBlock(256, 128), nn.Conv2d(256, 512, 2, 2, bias=True),
ResBlock(512, 128))
self.emb = nn.Sequential(nn.Conv2d(768, 640, 1, 1, 0),
ResBlock(640, 160))
self.embdp = nn.Sequential(nn.Conv2d(640, 640, 1, 1, 0))
self.h2l = nn.Conv2d(768, 256, 1, 1, 0)
self.width = 5
self.trans1 = AEALblock(d_model=640,
nhead=20,
dim_feedforward=2048,
dropout=0.2,
width=self.width)
self.trans2 = AEALblock(d_model=640,
nhead=20,
dim_feedforward=2048,
dropout=0.2,
width=self.width)
self.trans3 = AEALblock(d_model=640,
nhead=20,
dim_feedforward=2048,
dropout=0.2,
width=self.width)
def aeal(self, x, sem):
xe = self.emb(x)
x_ = xe
x_ = self.embdp(x_)
b, c, h1, w1 = x_.shape
bnew_ph = int(np.ceil(h1 / self.width) * self.width) - h1
bnew_pw = int(np.ceil(w1 / self.width) * self.width) - w1
newph1 = bnew_ph // 2
newph2 = bnew_ph - newph1
newpw1 = bnew_pw // 2
newpw2 = bnew_pw - newpw1
x_ = F.pad(x_, (newpw1, newpw2, newph1, newph2))
sem = F.pad(sem, (newpw1, newpw2, newph1, newph2))
x_ = self.trans1(x_, sem)
x_ = self.trans2(x_, sem)
x_ = self.trans3(x_, sem)
x_ = x_[:, :, newph1:h1 + newph1, newpw1:w1 + newpw1]
return x_
def forward(self, x, y):
inputs = torch.cat((x, y), 1)
x = self.start_conv0(inputs)
x_ = self.start_conv(x)
x1, x2, x3, x4 = self.trans(x_)
x4h = self.h2l(x4)
x3s = self.apptrans(torch.cat([x3, self.upn(x4h)], 1))
x4_ = self.aeal(x4, x3s)
x4 = torch.cat((x4, x4_), 1)
X4 = self.conv1(x4)
wh, ww = X4.shape[2], X4.shape[3]
X4 = rearrange(X4, 'b c h w -> b (h w) c')
X4, _, _, _, _, _ = self.ctran0(X4, wh, ww)
X4 = rearrange(X4, 'b (h w) c -> b c h w', h=wh, w=ww)
X3 = self.up(X4)
X3 = torch.cat((x3, X3), 1)
X3 = self.conv2(X3)
wh, ww = X3.shape[2], X3.shape[3]
X3 = rearrange(X3, 'b c h w -> b (h w) c')
X3, _, _, _, _, _ = self.ctran1(X3, wh, ww)
X3 = rearrange(X3, 'b (h w) c -> b c h w', h=wh, w=ww)
X2 = self.up(X3)
X2 = torch.cat((x2, X2), 1)
X2 = self.conv3(X2)
wh, ww = X2.shape[2], X2.shape[3]
X2 = rearrange(X2, 'b c h w -> b (h w) c')
X2, _, _, _, _, _ = self.ctran2(X2, wh, ww)
X2 = rearrange(X2, 'b (h w) c -> b c h w', h=wh, w=ww)
X1 = self.up(X2)
X1 = torch.cat((x1, X1), 1)
X1 = self.conv4(X1)
wh, ww = X1.shape[2], X1.shape[3]
X1 = rearrange(X1, 'b c h w -> b (h w) c')
X1, _, _, _, _, _ = self.ctran3(X1, wh, ww)
X1 = rearrange(X1, 'b (h w) c -> b c h w', h=wh, w=ww)
X0 = self.up(X1)
X0 = torch.cat((x_, X0), 1)
X0 = self.conv5(X0)
X = self.up(X0)
X = torch.cat((inputs, x, X), 1)
alpha = self.convo(X)
alpha = torch.clamp(alpha, min=0, max=1)
return alpha
class load_AEMatter_Model:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {},
}
RETURN_TYPES = ("AEMatter_Model", )
FUNCTION = "test"
CATEGORY = "AEMatter"
def test(self):
return (get_AEMatter_model(get_model_path()), )
class run_AEMatter_inference:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE", ),
"trimap": ("MASK", ),
"AEMatter_Model": ("AEMatter_Model", ),
},
}
RETURN_TYPES = ("MASK", )
FUNCTION = "test"
CATEGORY = "AEMatter"
def test(
self,
image,
trimap,
AEMatter_Model,
):
ret = []
batch_size = image.shape[0]
for i in range(batch_size):
tmp_i = from_torch_image(image[i])
tmp_m = from_torch_image(trimap[i])
tmp = do_infer(tmp_i, tmp_m, AEMatter_Model)
ret.append(tmp)
ret = to_torch_image(np.array(ret))
ret = ret.squeeze(-1)
print(ret.shape)
return ret
#!/usr/bin/python3
NODE_CLASS_MAPPINGS = {
'load_AEMatter_Model': load_AEMatter_Model,
'run_AEMatter_inference': run_AEMatter_inference,
}
NODE_DISPLAY_NAME_MAPPINGS = {
'load_AEMatter_Model': 'load_AEMatter_Model',
'run_AEMatter_inference': 'run_AEMatter_inference',
}