|
|
|
|
|
|
|
""" |
|
@Author : Peike Li |
|
@Contact : peike.li@yahoo.com |
|
@File : simple_extractor.py |
|
@Time : 8/30/19 8:59 PM |
|
@Desc : Simple Extractor |
|
@License : This source code is licensed under the license found in the |
|
LICENSE file in the root directory of this source tree. |
|
""" |
|
|
|
import os |
|
import torch |
|
import argparse |
|
import numpy as np |
|
from PIL import Image |
|
from tqdm import tqdm |
|
|
|
from torch.utils.data import DataLoader |
|
import torchvision.transforms as transforms |
|
|
|
import networks |
|
from utils.transforms import transform_logits |
|
from datasets.simple_extractor_dataset import SimpleFolderDataset |
|
|
|
dataset_settings = { |
|
'lip': { |
|
'input_size': [473, 473], |
|
'num_classes': 20, |
|
'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', |
|
'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', |
|
'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe'] |
|
}, |
|
'atr': { |
|
'input_size': [512, 512], |
|
'num_classes': 18, |
|
'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt', |
|
'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf'] |
|
}, |
|
'pascal': { |
|
'input_size': [512, 512], |
|
'num_classes': 7, |
|
'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'], |
|
} |
|
} |
|
|
|
|
|
def get_arguments(): |
|
"""Parse all the arguments provided from the CLI. |
|
Returns: |
|
A list of parsed arguments. |
|
""" |
|
parser = argparse.ArgumentParser(description="Self Correction for Human Parsing") |
|
|
|
parser.add_argument("--dataset", type=str, default='lip', choices=['lip', 'atr', 'pascal']) |
|
parser.add_argument("--model-restore", type=str, default='', help="restore pretrained model parameters.") |
|
parser.add_argument("--gpu", type=str, default='0', help="choose gpu device.") |
|
parser.add_argument("--input-dir", type=str, default='', help="path of input image folder.") |
|
parser.add_argument("--output-dir", type=str, default='', help="path of output image folder.") |
|
parser.add_argument("--logits", action='store_true', default=False, help="whether to save the logits.") |
|
|
|
return parser.parse_args() |
|
|
|
|
|
def get_palette(num_cls): |
|
""" Returns the color map for visualizing the segmentation mask. |
|
Args: |
|
num_cls: Number of classes |
|
Returns: |
|
The color map |
|
""" |
|
n = num_cls |
|
palette = [0] * (n * 3) |
|
for j in range(0, n): |
|
lab = j |
|
palette[j * 3 + 0] = 0 |
|
palette[j * 3 + 1] = 0 |
|
palette[j * 3 + 2] = 0 |
|
i = 0 |
|
while lab: |
|
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) |
|
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) |
|
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) |
|
i += 1 |
|
lab >>= 3 |
|
return palette |
|
|
|
|
|
def main(): |
|
args = get_arguments() |
|
|
|
gpus = [int(i) for i in args.gpu.split(',')] |
|
assert len(gpus) == 1 |
|
if not args.gpu == 'None': |
|
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu |
|
|
|
num_classes = dataset_settings[args.dataset]['num_classes'] |
|
input_size = dataset_settings[args.dataset]['input_size'] |
|
label = dataset_settings[args.dataset]['label'] |
|
print("Evaluating total class number {} with {}".format(num_classes, label)) |
|
|
|
model = networks.init_model('resnet101', num_classes=num_classes, pretrained=None) |
|
|
|
state_dict = torch.load(args.model_restore)['state_dict'] |
|
from collections import OrderedDict |
|
new_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
name = k[7:] |
|
new_state_dict[name] = v |
|
model.load_state_dict(new_state_dict) |
|
model.cuda() |
|
model.eval() |
|
|
|
transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229]) |
|
]) |
|
dataset = SimpleFolderDataset(root=args.input_dir, input_size=input_size, transform=transform) |
|
dataloader = DataLoader(dataset) |
|
|
|
if not os.path.exists(args.output_dir): |
|
os.makedirs(args.output_dir) |
|
|
|
palette = get_palette(num_classes) |
|
with torch.no_grad(): |
|
for idx, batch in enumerate(tqdm(dataloader)): |
|
image, meta = batch |
|
img_name = meta['name'][0] |
|
c = meta['center'].numpy()[0] |
|
s = meta['scale'].numpy()[0] |
|
w = meta['width'].numpy()[0] |
|
h = meta['height'].numpy()[0] |
|
|
|
output = model(image.cuda()) |
|
upsample = torch.nn.Upsample(size=input_size, mode='bilinear', align_corners=True) |
|
upsample_output = upsample(output[0][-1][0].unsqueeze(0)) |
|
upsample_output = upsample_output.squeeze() |
|
upsample_output = upsample_output.permute(1, 2, 0) |
|
|
|
logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=input_size) |
|
parsing_result = np.argmax(logits_result, axis=2) |
|
parsing_result_path = os.path.join(args.output_dir, img_name[:-4] + '.png') |
|
output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8)) |
|
output_img.putpalette(palette) |
|
output_img.save(parsing_result_path) |
|
if args.logits: |
|
logits_result_path = os.path.join(args.output_dir, img_name[:-4] + '.npy') |
|
np.save(logits_result_path, logits_result) |
|
return |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|