aravindhv10
commited on
Commit
·
0be46a0
1
Parent(s):
312ca62
Routine updates
Browse files- .gitattributes +7 -0
- .gitignore +22 -20
- ComfyUI_AEMatter/AEMatter.run.sh +3 -0
- ComfyUI_MVANet/MVANet_inference.run.sh +3 -0
- ComfyUI_MVANet/download.sh +13 -0
- checkpoints/MVANet/garment.pth +3 -0
- checkpoints/MVANet/skin.pth +3 -0
- demo/demo.jpg +3 -0
- demo/demo_atr.png +3 -0
- demo/demo_lip.png +3 -0
- demo/demo_pascal.png +3 -0
- demo/lip-visualization.jpg +3 -0
- main.org +680 -0
- training_code/MVANet/README.org +2338 -0
.gitattributes
CHANGED
@@ -40,3 +40,10 @@ checkpoints/Model_80.pth filter=lfs diff=lfs merge=lfs -text
|
|
40 |
checkpoints/AEMatter/AEM_RWA.ckpt filter=lfs diff=lfs merge=lfs -text
|
41 |
checkpoints/StableDiffusion/90c7c97574f8db765509b6a5d2e7b2551b430a10cac03e37d368654eac5e8169cd149644d188be4b5b2f1b9f29e66b64a02535f622f2bf284c319b076224cb2b filter=lfs diff=lfs merge=lfs -text
|
42 |
checkpoints/StableDiffusion/b970812225cfb95427c13e73b75eef66430e2a525876dddac494d70fe4ed0524cb197043e0ac3dc3026b32a45cd1d6d126ec2fe74a5bc3ef5df21836ca022b30 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
checkpoints/AEMatter/AEM_RWA.ckpt filter=lfs diff=lfs merge=lfs -text
|
41 |
checkpoints/StableDiffusion/90c7c97574f8db765509b6a5d2e7b2551b430a10cac03e37d368654eac5e8169cd149644d188be4b5b2f1b9f29e66b64a02535f622f2bf284c319b076224cb2b filter=lfs diff=lfs merge=lfs -text
|
42 |
checkpoints/StableDiffusion/b970812225cfb95427c13e73b75eef66430e2a525876dddac494d70fe4ed0524cb197043e0ac3dc3026b32a45cd1d6d126ec2fe74a5bc3ef5df21836ca022b30 filter=lfs diff=lfs merge=lfs -text
|
43 |
+
checkpoints/MVANet/skin.pth filter=lfs diff=lfs merge=lfs -text
|
44 |
+
checkpoints/MVANet/garment.pth filter=lfs diff=lfs merge=lfs -text
|
45 |
+
demo/demo_lip.png filter=lfs diff=lfs merge=lfs -text
|
46 |
+
demo/lip-visualization.jpg filter=lfs diff=lfs merge=lfs -text
|
47 |
+
demo/demo_pascal.png filter=lfs diff=lfs merge=lfs -text
|
48 |
+
demo/demo_atr.png filter=lfs diff=lfs merge=lfs -text
|
49 |
+
demo/demo.jpg filter=lfs diff=lfs merge=lfs -text
|
.gitignore
CHANGED
@@ -1,28 +1,30 @@
|
|
1 |
-
/ComfyUI_MVANet/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
/ComfyUI_MVANet/MVANet_inference.class.py
|
3 |
/ComfyUI_MVANet/MVANet_inference.execute.py
|
4 |
/ComfyUI_MVANet/MVANet_inference.function.py
|
5 |
/ComfyUI_MVANet/MVANet_inference.import.py
|
6 |
-
/ComfyUI_MVANet/MVANet_inference.run.sh
|
7 |
/ComfyUI_MVANet/MVANet_inference.unify.sh
|
8 |
-
/
|
9 |
-
data/
|
10 |
-
demo/demo_atr.png
|
11 |
-
demo/demo.jpg
|
12 |
-
demo/demo_lip.png
|
13 |
-
demo/demo_pascal.png
|
14 |
-
demo/lip-visualization.jpg
|
15 |
/git_add.txt
|
|
|
|
|
|
|
|
|
16 |
log/
|
17 |
-
/main.org
|
18 |
pretrain_model/
|
19 |
-
|
20 |
-
/rm.txt
|
21 |
-
/waste.txt
|
22 |
-
ComfyUI_AEMatter/AEMatter.execute.py
|
23 |
-
ComfyUI_AEMatter/__pycache__/__init__.cpython-310.pyc
|
24 |
-
ComfyUI_AEMatter/AEMatter.run.sh
|
25 |
-
ComfyUI_AEMatter/AEMatter.class.py
|
26 |
-
ComfyUI_AEMatter/AEMatter.import.py
|
27 |
-
ComfyUI_AEMatter/AEMatter.function.py
|
28 |
-
ComfyUI_AEMatter/AEMatter.unify.sh
|
|
|
1 |
+
/ComfyUI_MVANet/__pycache__/__init__.cpython-310.pyc
|
2 |
+
/ComfyUI_MVANet/#README.org#
|
3 |
+
/ComfyUI_MVANet/.#README.org
|
4 |
+
/ComfyUI_MVANet/README.org~
|
5 |
+
/ComfyUI_MVANet/.README.org.~undo-tree~
|
6 |
+
/#main.org#
|
7 |
+
/.#main.org
|
8 |
+
/main.org~
|
9 |
+
/.main.org.~undo-tree~
|
10 |
+
/.README.md.~undo-tree~
|
11 |
+
/ComfyUI_MVANet/.#README.org
|
12 |
+
/ComfyUI_AEMatter/__pycache__/__init__.cpython-310.pyc
|
13 |
+
/ComfyUI_AEMatter/AEMatter.class.py
|
14 |
+
/ComfyUI_AEMatter/AEMatter.execute.py
|
15 |
+
/ComfyUI_AEMatter/AEMatter.function.py
|
16 |
+
/ComfyUI_AEMatter/AEMatter.import.py
|
17 |
/ComfyUI_MVANet/MVANet_inference.class.py
|
18 |
/ComfyUI_MVANet/MVANet_inference.execute.py
|
19 |
/ComfyUI_MVANet/MVANet_inference.function.py
|
20 |
/ComfyUI_MVANet/MVANet_inference.import.py
|
|
|
21 |
/ComfyUI_MVANet/MVANet_inference.unify.sh
|
22 |
+
/ComfyUI_AEMatter/AEMatter.unify.sh
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
/git_add.txt
|
24 |
+
/git_lfs_track.txt
|
25 |
+
/gitignore.txt
|
26 |
+
/rm.txt
|
27 |
+
/work.sh
|
28 |
log/
|
|
|
29 |
pretrain_model/
|
30 |
+
commit_and_push.sh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ComfyUI_AEMatter/AEMatter.run.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
. "${HOME}/dbnew.sh"
|
3 |
+
python3 './AEMatter.py'
|
ComfyUI_MVANet/MVANet_inference.run.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
. "${HOME}/dbnew.sh"
|
3 |
+
python3 './MVANet_inference.py'
|
ComfyUI_MVANet/download.sh
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
get_repo(){
|
3 |
+
DIR_REPO="${HOME}/GITHUB/$('echo' "${1}" | 'sed' 's/^git@github.com://g ; s@^https://github.com/@@g ; s@.git$@@g' )"
|
4 |
+
DIR_BASE="$('dirname' '--' "${DIR_REPO}")"
|
5 |
+
mkdir -pv -- "${DIR_BASE}"
|
6 |
+
cd "${DIR_BASE}"
|
7 |
+
git clone "${1}"
|
8 |
+
cd "${DIR_REPO}"
|
9 |
+
git pull
|
10 |
+
git submodule update --recursive --init
|
11 |
+
}
|
12 |
+
|
13 |
+
get_repo 'https://github.com/qianyu-dlut/MVANet.git'
|
checkpoints/MVANet/garment.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7604ed46e06fbcff3b8f38c8934d253617171d02aecdd028f0f01086d9344893
|
3 |
+
size 380785263
|
checkpoints/MVANet/skin.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c71afcdd9cb1be73e43d84f5ffc2ae12b4964cc13c8460fc0adb6d52a0603cd4
|
3 |
+
size 380782803
|
demo/demo.jpg
ADDED
Git LFS Details
|
demo/demo_atr.png
ADDED
Git LFS Details
|
demo/demo_lip.png
ADDED
Git LFS Details
|
demo/demo_pascal.png
ADDED
Git LFS Details
|
demo/lip-visualization.jpg
ADDED
Git LFS Details
|
main.org
ADDED
@@ -0,0 +1,680 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
* COMMENT WORK SPACE
|
2 |
+
cd $HOME/HUGGINGFACE/aravindhv10/Self-Correction-Human-Parsing
|
3 |
+
|
4 |
+
** ELISP
|
5 |
+
#+begin_src elisp
|
6 |
+
(save-buffer)
|
7 |
+
(org-babel-tangle)
|
8 |
+
(shell-command "./work.sh")
|
9 |
+
#+end_src
|
10 |
+
|
11 |
+
#+RESULTS:
|
12 |
+
: 0
|
13 |
+
|
14 |
+
** ELISP
|
15 |
+
#+begin_src elisp
|
16 |
+
(shell-command "./commit_and_push.sh")
|
17 |
+
#+end_src
|
18 |
+
|
19 |
+
** SHELL
|
20 |
+
#+begin_src sh :shebang #!/bin/sh :results output
|
21 |
+
git status
|
22 |
+
#+end_src
|
23 |
+
|
24 |
+
#+RESULTS:
|
25 |
+
#+begin_example
|
26 |
+
On branch main
|
27 |
+
Your branch is up to date with 'origin/main'.
|
28 |
+
|
29 |
+
Changes to be committed:
|
30 |
+
(use "git restore --staged <file>..." to unstage)
|
31 |
+
modified: .gitattributes
|
32 |
+
modified: .gitignore
|
33 |
+
new file: ComfyUI_AEMatter/AEMatter.run.sh
|
34 |
+
new file: ComfyUI_MVANet/MVANet_inference.run.sh
|
35 |
+
new file: ComfyUI_MVANet/download.sh
|
36 |
+
new file: checkpoints/MVANet/garment.pth
|
37 |
+
new file: checkpoints/MVANet/skin.pth
|
38 |
+
new file: demo/demo.jpg
|
39 |
+
new file: demo/demo_atr.png
|
40 |
+
new file: demo/demo_lip.png
|
41 |
+
new file: demo/demo_pascal.png
|
42 |
+
new file: demo/lip-visualization.jpg
|
43 |
+
new file: main.org
|
44 |
+
new file: training_code/MVANet/README.org
|
45 |
+
|
46 |
+
#+end_example
|
47 |
+
|
48 |
+
* Commit and push
|
49 |
+
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./commit_and_push.sh
|
50 |
+
git commit -m 'Routine updates'
|
51 |
+
git push
|
52 |
+
#+end_src
|
53 |
+
|
54 |
+
* List of large files
|
55 |
+
#+begin_src conf :tangle ./git_lfs_track.txt
|
56 |
+
checkpoints/AEMatter/AEM_RWA.ckpt
|
57 |
+
checkpoints/atr.pth
|
58 |
+
checkpoints/lip.pth
|
59 |
+
checkpoints/Model_80.pth
|
60 |
+
checkpoints/MVANet/garment.pth
|
61 |
+
checkpoints/MVANet/skin.pth
|
62 |
+
checkpoints/pascal.pth
|
63 |
+
checkpoints/StableDiffusion/90c7c97574f8db765509b6a5d2e7b2551b430a10cac03e37d368654eac5e8169cd149644d188be4b5b2f1b9f29e66b64a02535f622f2bf284c319b076224cb2b
|
64 |
+
checkpoints/StableDiffusion/b970812225cfb95427c13e73b75eef66430e2a525876dddac494d70fe4ed0524cb197043e0ac3dc3026b32a45cd1d6d126ec2fe74a5bc3ef5df21836ca022b30
|
65 |
+
demo/demo_atr.png
|
66 |
+
demo/demo.jpg
|
67 |
+
demo/demo_lip.png
|
68 |
+
demo/demo_pascal.png
|
69 |
+
demo/lip-visualization.jpg
|
70 |
+
#+end_src
|
71 |
+
|
72 |
+
* List of source files to add
|
73 |
+
#+begin_src conf :tangle ./git_add.txt
|
74 |
+
checkpoints/StableDiffusion/hash
|
75 |
+
ComfyUI_AEMatter/AEMatter.py
|
76 |
+
ComfyUI_AEMatter/AEMatter.run.sh
|
77 |
+
ComfyUI_AEMatter/__init__.py
|
78 |
+
ComfyUI_AEMatter/README.org
|
79 |
+
ComfyUI_MVANet/download.sh
|
80 |
+
ComfyUI_MVANet/__init__.py
|
81 |
+
ComfyUI_MVANet/MVANet_inference.py
|
82 |
+
ComfyUI_MVANet/MVANet_inference.run.sh
|
83 |
+
ComfyUI_MVANet/README.org
|
84 |
+
ComfyUI_MVANet/requirements.txt
|
85 |
+
datasets/datasets.py
|
86 |
+
datasets/__init__.py
|
87 |
+
datasets/simple_extractor_dataset.py
|
88 |
+
datasets/target_generation.py
|
89 |
+
environment.yaml
|
90 |
+
evaluate.py
|
91 |
+
.gitattributes
|
92 |
+
.gitignore
|
93 |
+
LICENSE
|
94 |
+
main.org
|
95 |
+
mhp_extension/coco_style_annotation_creator/human_to_coco.py
|
96 |
+
mhp_extension/coco_style_annotation_creator/pycococreatortools.py
|
97 |
+
mhp_extension/coco_style_annotation_creator/test_human2coco_format.py
|
98 |
+
mhp_extension/demo.ipynb
|
99 |
+
mhp_extension/detectron2/.circleci/config.yml
|
100 |
+
mhp_extension/detectron2/.clang-format
|
101 |
+
mhp_extension/detectron2/configs/Base-RCNN-C4.yaml
|
102 |
+
mhp_extension/detectron2/configs/Base-RCNN-DilatedC5.yaml
|
103 |
+
mhp_extension/detectron2/configs/Base-RCNN-FPN.yaml
|
104 |
+
mhp_extension/detectron2/configs/Base-RetinaNet.yaml
|
105 |
+
mhp_extension/detectron2/configs/Cityscapes/mask_rcnn_R_50_FPN.yaml
|
106 |
+
mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml
|
107 |
+
mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml
|
108 |
+
mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml
|
109 |
+
mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml
|
110 |
+
mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml
|
111 |
+
mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml
|
112 |
+
mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml
|
113 |
+
mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml
|
114 |
+
mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml
|
115 |
+
mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml
|
116 |
+
mhp_extension/detectron2/configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml
|
117 |
+
mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml
|
118 |
+
mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml
|
119 |
+
mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml
|
120 |
+
mhp_extension/detectron2/configs/COCO-Detection/rpn_R_50_C4_1x.yaml
|
121 |
+
mhp_extension/detectron2/configs/COCO-Detection/rpn_R_50_FPN_1x.yaml
|
122 |
+
mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml
|
123 |
+
mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml
|
124 |
+
mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml
|
125 |
+
mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml
|
126 |
+
mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml
|
127 |
+
mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml
|
128 |
+
mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml
|
129 |
+
mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
|
130 |
+
mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
|
131 |
+
mhp_extension/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml
|
132 |
+
mhp_extension/detectron2/configs/COCO-Keypoints/Base-Keypoint-RCNN-FPN.yaml
|
133 |
+
mhp_extension/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml
|
134 |
+
mhp_extension/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml
|
135 |
+
mhp_extension/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml
|
136 |
+
mhp_extension/detectron2/configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml
|
137 |
+
mhp_extension/detectron2/configs/COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml
|
138 |
+
mhp_extension/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml
|
139 |
+
mhp_extension/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml
|
140 |
+
mhp_extension/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml
|
141 |
+
mhp_extension/detectron2/configs/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x.yaml
|
142 |
+
mhp_extension/detectron2/configs/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x.yaml
|
143 |
+
mhp_extension/detectron2/configs/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml
|
144 |
+
mhp_extension/detectron2/configs/Detectron1-Comparisons/README.md
|
145 |
+
mhp_extension/detectron2/configs/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml
|
146 |
+
mhp_extension/detectron2/configs/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
|
147 |
+
mhp_extension/detectron2/configs/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x.yaml
|
148 |
+
mhp_extension/detectron2/configs/Misc/cascade_mask_rcnn_R_50_FPN_1x.yaml
|
149 |
+
mhp_extension/detectron2/configs/Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml
|
150 |
+
mhp_extension/detectron2/configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv_parsing.yaml
|
151 |
+
mhp_extension/detectron2/configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml
|
152 |
+
mhp_extension/detectron2/configs/Misc/demo.yaml
|
153 |
+
mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_1x_cls_agnostic.yaml
|
154 |
+
mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml
|
155 |
+
mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml
|
156 |
+
mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_3x_gn.yaml
|
157 |
+
mhp_extension/detectron2/configs/Misc/mask_rcnn_R_50_FPN_3x_syncbn.yaml
|
158 |
+
mhp_extension/detectron2/configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml
|
159 |
+
mhp_extension/detectron2/configs/Misc/parsing_finetune_cihp.yaml
|
160 |
+
mhp_extension/detectron2/configs/Misc/parsing_inference.yaml
|
161 |
+
mhp_extension/detectron2/configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml
|
162 |
+
mhp_extension/detectron2/configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml
|
163 |
+
mhp_extension/detectron2/configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml
|
164 |
+
mhp_extension/detectron2/configs/Misc/semantic_R_50_FPN_1x.yaml
|
165 |
+
mhp_extension/detectron2/configs/my_Base-RCNN-FPN.yaml
|
166 |
+
mhp_extension/detectron2/configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml
|
167 |
+
mhp_extension/detectron2/configs/PascalVOC-Detection/faster_rcnn_R_50_FPN.yaml
|
168 |
+
mhp_extension/detectron2/configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml
|
169 |
+
mhp_extension/detectron2/configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml
|
170 |
+
mhp_extension/detectron2/configs/quick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml
|
171 |
+
mhp_extension/detectron2/configs/quick_schedules/fast_rcnn_R_50_FPN_instant_test.yaml
|
172 |
+
mhp_extension/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml
|
173 |
+
mhp_extension/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml
|
174 |
+
mhp_extension/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml
|
175 |
+
mhp_extension/detectron2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_training_acc_test.yaml
|
176 |
+
mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml
|
177 |
+
mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml
|
178 |
+
mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml
|
179 |
+
mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_C4_training_acc_test.yaml
|
180 |
+
mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_DC5_inference_acc_test.yaml
|
181 |
+
mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml
|
182 |
+
mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_instant_test.yaml
|
183 |
+
mhp_extension/detectron2/configs/quick_schedules/mask_rcnn_R_50_FPN_training_acc_test.yaml
|
184 |
+
mhp_extension/detectron2/configs/quick_schedules/panoptic_fpn_R_50_inference_acc_test.yaml
|
185 |
+
mhp_extension/detectron2/configs/quick_schedules/panoptic_fpn_R_50_instant_test.yaml
|
186 |
+
mhp_extension/detectron2/configs/quick_schedules/panoptic_fpn_R_50_training_acc_test.yaml
|
187 |
+
mhp_extension/detectron2/configs/quick_schedules/README.md
|
188 |
+
mhp_extension/detectron2/configs/quick_schedules/retinanet_R_50_FPN_inference_acc_test.yaml
|
189 |
+
mhp_extension/detectron2/configs/quick_schedules/retinanet_R_50_FPN_instant_test.yaml
|
190 |
+
mhp_extension/detectron2/configs/quick_schedules/rpn_R_50_FPN_inference_acc_test.yaml
|
191 |
+
mhp_extension/detectron2/configs/quick_schedules/rpn_R_50_FPN_instant_test.yaml
|
192 |
+
mhp_extension/detectron2/configs/quick_schedules/semantic_R_50_FPN_inference_acc_test.yaml
|
193 |
+
mhp_extension/detectron2/configs/quick_schedules/semantic_R_50_FPN_instant_test.yaml
|
194 |
+
mhp_extension/detectron2/configs/quick_schedules/semantic_R_50_FPN_training_acc_test.yaml
|
195 |
+
mhp_extension/detectron2/demo/demo.py
|
196 |
+
mhp_extension/detectron2/demo/predictor.py
|
197 |
+
mhp_extension/detectron2/demo/README.md
|
198 |
+
mhp_extension/detectron2/detectron2/checkpoint/c2_model_loading.py
|
199 |
+
mhp_extension/detectron2/detectron2/checkpoint/catalog.py
|
200 |
+
mhp_extension/detectron2/detectron2/checkpoint/detection_checkpoint.py
|
201 |
+
mhp_extension/detectron2/detectron2/checkpoint/__init__.py
|
202 |
+
mhp_extension/detectron2/detectron2/config/compat.py
|
203 |
+
mhp_extension/detectron2/detectron2/config/config.py
|
204 |
+
mhp_extension/detectron2/detectron2/config/defaults.py
|
205 |
+
mhp_extension/detectron2/detectron2/config/__init__.py
|
206 |
+
mhp_extension/detectron2/detectron2/data/build.py
|
207 |
+
mhp_extension/detectron2/detectron2/data/catalog.py
|
208 |
+
mhp_extension/detectron2/detectron2/data/common.py
|
209 |
+
mhp_extension/detectron2/detectron2/data/dataset_mapper.py
|
210 |
+
mhp_extension/detectron2/detectron2/data/datasets/builtin_meta.py
|
211 |
+
mhp_extension/detectron2/detectron2/data/datasets/builtin.py
|
212 |
+
mhp_extension/detectron2/detectron2/data/datasets/cityscapes.py
|
213 |
+
mhp_extension/detectron2/detectron2/data/datasets/coco.py
|
214 |
+
mhp_extension/detectron2/detectron2/data/datasets/__init__.py
|
215 |
+
mhp_extension/detectron2/detectron2/data/datasets/lvis.py
|
216 |
+
mhp_extension/detectron2/detectron2/data/datasets/lvis_v0_5_categories.py
|
217 |
+
mhp_extension/detectron2/detectron2/data/datasets/pascal_voc.py
|
218 |
+
mhp_extension/detectron2/detectron2/data/datasets/README.md
|
219 |
+
mhp_extension/detectron2/detectron2/data/datasets/register_coco.py
|
220 |
+
mhp_extension/detectron2/detectron2/data/detection_utils.py
|
221 |
+
mhp_extension/detectron2/detectron2/data/__init__.py
|
222 |
+
mhp_extension/detectron2/detectron2/data/samplers/distributed_sampler.py
|
223 |
+
mhp_extension/detectron2/detectron2/data/samplers/grouped_batch_sampler.py
|
224 |
+
mhp_extension/detectron2/detectron2/data/samplers/__init__.py
|
225 |
+
mhp_extension/detectron2/detectron2/data/transforms/__init__.py
|
226 |
+
mhp_extension/detectron2/detectron2/data/transforms/transform_gen.py
|
227 |
+
mhp_extension/detectron2/detectron2/data/transforms/transform.py
|
228 |
+
mhp_extension/detectron2/detectron2/engine/defaults.py
|
229 |
+
mhp_extension/detectron2/detectron2/engine/hooks.py
|
230 |
+
mhp_extension/detectron2/detectron2/engine/__init__.py
|
231 |
+
mhp_extension/detectron2/detectron2/engine/launch.py
|
232 |
+
mhp_extension/detectron2/detectron2/engine/train_loop.py
|
233 |
+
mhp_extension/detectron2/detectron2/evaluation/cityscapes_evaluation.py
|
234 |
+
mhp_extension/detectron2/detectron2/evaluation/coco_evaluation.py
|
235 |
+
mhp_extension/detectron2/detectron2/evaluation/evaluator.py
|
236 |
+
mhp_extension/detectron2/detectron2/evaluation/__init__.py
|
237 |
+
mhp_extension/detectron2/detectron2/evaluation/lvis_evaluation.py
|
238 |
+
mhp_extension/detectron2/detectron2/evaluation/panoptic_evaluation.py
|
239 |
+
mhp_extension/detectron2/detectron2/evaluation/pascal_voc_evaluation.py
|
240 |
+
mhp_extension/detectron2/detectron2/evaluation/rotated_coco_evaluation.py
|
241 |
+
mhp_extension/detectron2/detectron2/evaluation/sem_seg_evaluation.py
|
242 |
+
mhp_extension/detectron2/detectron2/evaluation/testing.py
|
243 |
+
mhp_extension/detectron2/detectron2/export/api.py
|
244 |
+
mhp_extension/detectron2/detectron2/export/c10.py
|
245 |
+
mhp_extension/detectron2/detectron2/export/caffe2_export.py
|
246 |
+
mhp_extension/detectron2/detectron2/export/caffe2_inference.py
|
247 |
+
mhp_extension/detectron2/detectron2/export/caffe2_modeling.py
|
248 |
+
mhp_extension/detectron2/detectron2/export/__init__.py
|
249 |
+
mhp_extension/detectron2/detectron2/export/patcher.py
|
250 |
+
mhp_extension/detectron2/detectron2/export/README.md
|
251 |
+
mhp_extension/detectron2/detectron2/export/shared.py
|
252 |
+
mhp_extension/detectron2/detectron2/__init__.py
|
253 |
+
mhp_extension/detectron2/detectron2/layers/batch_norm.py
|
254 |
+
mhp_extension/detectron2/detectron2/layers/blocks.py
|
255 |
+
mhp_extension/detectron2/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_cpu.cpp
|
256 |
+
mhp_extension/detectron2/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_cuda.cu
|
257 |
+
mhp_extension/detectron2/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated.h
|
258 |
+
mhp_extension/detectron2/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_utils.h
|
259 |
+
mhp_extension/detectron2/detectron2/layers/csrc/cuda_version.cu
|
260 |
+
mhp_extension/detectron2/detectron2/layers/csrc/deformable/deform_conv_cuda.cu
|
261 |
+
mhp_extension/detectron2/detectron2/layers/csrc/deformable/deform_conv_cuda_kernel.cu
|
262 |
+
mhp_extension/detectron2/detectron2/layers/csrc/deformable/deform_conv.h
|
263 |
+
mhp_extension/detectron2/detectron2/layers/csrc/nms_rotated/nms_rotated_cpu.cpp
|
264 |
+
mhp_extension/detectron2/detectron2/layers/csrc/nms_rotated/nms_rotated_cuda.cu
|
265 |
+
mhp_extension/detectron2/detectron2/layers/csrc/nms_rotated/nms_rotated.h
|
266 |
+
mhp_extension/detectron2/detectron2/layers/csrc/README.md
|
267 |
+
mhp_extension/detectron2/detectron2/layers/csrc/ROIAlign/ROIAlign_cpu.cpp
|
268 |
+
mhp_extension/detectron2/detectron2/layers/csrc/ROIAlign/ROIAlign_cuda.cu
|
269 |
+
mhp_extension/detectron2/detectron2/layers/csrc/ROIAlign/ROIAlign.h
|
270 |
+
mhp_extension/detectron2/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated_cpu.cpp
|
271 |
+
mhp_extension/detectron2/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated_cuda.cu
|
272 |
+
mhp_extension/detectron2/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated.h
|
273 |
+
mhp_extension/detectron2/detectron2/layers/csrc/vision.cpp
|
274 |
+
mhp_extension/detectron2/detectron2/layers/deform_conv.py
|
275 |
+
mhp_extension/detectron2/detectron2/layers/__init__.py
|
276 |
+
mhp_extension/detectron2/detectron2/layers/mask_ops.py
|
277 |
+
mhp_extension/detectron2/detectron2/layers/nms.py
|
278 |
+
mhp_extension/detectron2/detectron2/layers/roi_align.py
|
279 |
+
mhp_extension/detectron2/detectron2/layers/roi_align_rotated.py
|
280 |
+
mhp_extension/detectron2/detectron2/layers/rotated_boxes.py
|
281 |
+
mhp_extension/detectron2/detectron2/layers/shape_spec.py
|
282 |
+
mhp_extension/detectron2/detectron2/layers/wrappers.py
|
283 |
+
mhp_extension/detectron2/detectron2/modeling/anchor_generator.py
|
284 |
+
mhp_extension/detectron2/detectron2/modeling/backbone/backbone.py
|
285 |
+
mhp_extension/detectron2/detectron2/modeling/backbone/build.py
|
286 |
+
mhp_extension/detectron2/detectron2/modeling/backbone/fpn.py
|
287 |
+
mhp_extension/detectron2/detectron2/modeling/backbone/__init__.py
|
288 |
+
mhp_extension/detectron2/detectron2/modeling/backbone/resnet.py
|
289 |
+
mhp_extension/detectron2/detectron2/modeling/box_regression.py
|
290 |
+
mhp_extension/detectron2/detectron2/modeling/__init__.py
|
291 |
+
mhp_extension/detectron2/detectron2/modeling/matcher.py
|
292 |
+
mhp_extension/detectron2/detectron2/modeling/meta_arch/build.py
|
293 |
+
mhp_extension/detectron2/detectron2/modeling/meta_arch/__init__.py
|
294 |
+
mhp_extension/detectron2/detectron2/modeling/meta_arch/panoptic_fpn.py
|
295 |
+
mhp_extension/detectron2/detectron2/modeling/meta_arch/rcnn.py
|
296 |
+
mhp_extension/detectron2/detectron2/modeling/meta_arch/retinanet.py
|
297 |
+
mhp_extension/detectron2/detectron2/modeling/meta_arch/semantic_seg.py
|
298 |
+
mhp_extension/detectron2/detectron2/modeling/poolers.py
|
299 |
+
mhp_extension/detectron2/detectron2/modeling/postprocessing.py
|
300 |
+
mhp_extension/detectron2/detectron2/modeling/proposal_generator/build.py
|
301 |
+
mhp_extension/detectron2/detectron2/modeling/proposal_generator/__init__.py
|
302 |
+
mhp_extension/detectron2/detectron2/modeling/proposal_generator/proposal_utils.py
|
303 |
+
mhp_extension/detectron2/detectron2/modeling/proposal_generator/rpn_outputs.py
|
304 |
+
mhp_extension/detectron2/detectron2/modeling/proposal_generator/rpn.py
|
305 |
+
mhp_extension/detectron2/detectron2/modeling/proposal_generator/rrpn.py
|
306 |
+
mhp_extension/detectron2/detectron2/modeling/roi_heads/box_head.py
|
307 |
+
mhp_extension/detectron2/detectron2/modeling/roi_heads/cascade_rcnn.py
|
308 |
+
mhp_extension/detectron2/detectron2/modeling/roi_heads/fast_rcnn.py
|
309 |
+
mhp_extension/detectron2/detectron2/modeling/roi_heads/__init__.py
|
310 |
+
mhp_extension/detectron2/detectron2/modeling/roi_heads/keypoint_head.py
|
311 |
+
mhp_extension/detectron2/detectron2/modeling/roi_heads/mask_head.py
|
312 |
+
mhp_extension/detectron2/detectron2/modeling/roi_heads/roi_heads.py
|
313 |
+
mhp_extension/detectron2/detectron2/modeling/roi_heads/rotated_fast_rcnn.py
|
314 |
+
mhp_extension/detectron2/detectron2/modeling/sampling.py
|
315 |
+
mhp_extension/detectron2/detectron2/modeling/test_time_augmentation.py
|
316 |
+
mhp_extension/detectron2/detectron2/model_zoo/__init__.py
|
317 |
+
mhp_extension/detectron2/detectron2/model_zoo/model_zoo.py
|
318 |
+
mhp_extension/detectron2/detectron2/solver/build.py
|
319 |
+
mhp_extension/detectron2/detectron2/solver/__init__.py
|
320 |
+
mhp_extension/detectron2/detectron2/solver/lr_scheduler.py
|
321 |
+
mhp_extension/detectron2/detectron2/structures/boxes.py
|
322 |
+
mhp_extension/detectron2/detectron2/structures/image_list.py
|
323 |
+
mhp_extension/detectron2/detectron2/structures/__init__.py
|
324 |
+
mhp_extension/detectron2/detectron2/structures/instances.py
|
325 |
+
mhp_extension/detectron2/detectron2/structures/keypoints.py
|
326 |
+
mhp_extension/detectron2/detectron2/structures/masks.py
|
327 |
+
mhp_extension/detectron2/detectron2/structures/rotated_boxes.py
|
328 |
+
mhp_extension/detectron2/detectron2/utils/analysis.py
|
329 |
+
mhp_extension/detectron2/detectron2/utils/collect_env.py
|
330 |
+
mhp_extension/detectron2/detectron2/utils/colormap.py
|
331 |
+
mhp_extension/detectron2/detectron2/utils/comm.py
|
332 |
+
mhp_extension/detectron2/detectron2/utils/env.py
|
333 |
+
mhp_extension/detectron2/detectron2/utils/events.py
|
334 |
+
mhp_extension/detectron2/detectron2/utils/__init__.py
|
335 |
+
mhp_extension/detectron2/detectron2/utils/logger.py
|
336 |
+
mhp_extension/detectron2/detectron2/utils/memory.py
|
337 |
+
mhp_extension/detectron2/detectron2/utils/README.md
|
338 |
+
mhp_extension/detectron2/detectron2/utils/registry.py
|
339 |
+
mhp_extension/detectron2/detectron2/utils/serialize.py
|
340 |
+
mhp_extension/detectron2/detectron2/utils/video_visualizer.py
|
341 |
+
mhp_extension/detectron2/detectron2/utils/visualizer.py
|
342 |
+
mhp_extension/detectron2/dev/linter.sh
|
343 |
+
mhp_extension/detectron2/dev/packaging/build_all_wheels.sh
|
344 |
+
mhp_extension/detectron2/dev/packaging/build_wheel.sh
|
345 |
+
mhp_extension/detectron2/dev/packaging/gen_wheel_index.sh
|
346 |
+
mhp_extension/detectron2/dev/packaging/pkg_helpers.bash
|
347 |
+
mhp_extension/detectron2/dev/packaging/README.md
|
348 |
+
mhp_extension/detectron2/dev/parse_results.sh
|
349 |
+
mhp_extension/detectron2/dev/README.md
|
350 |
+
mhp_extension/detectron2/dev/run_inference_tests.sh
|
351 |
+
mhp_extension/detectron2/dev/run_instant_tests.sh
|
352 |
+
mhp_extension/detectron2/docker/docker-compose.yml
|
353 |
+
mhp_extension/detectron2/docker/Dockerfile
|
354 |
+
mhp_extension/detectron2/docker/Dockerfile-circleci
|
355 |
+
mhp_extension/detectron2/docker/README.md
|
356 |
+
mhp_extension/detectron2/docs/conf.py
|
357 |
+
mhp_extension/detectron2/docs/.gitignore
|
358 |
+
mhp_extension/detectron2/docs/index.rst
|
359 |
+
mhp_extension/detectron2/docs/Makefile
|
360 |
+
mhp_extension/detectron2/docs/modules/checkpoint.rst
|
361 |
+
mhp_extension/detectron2/docs/modules/config.rst
|
362 |
+
mhp_extension/detectron2/docs/modules/data.rst
|
363 |
+
mhp_extension/detectron2/docs/modules/engine.rst
|
364 |
+
mhp_extension/detectron2/docs/modules/evaluation.rst
|
365 |
+
mhp_extension/detectron2/docs/modules/export.rst
|
366 |
+
mhp_extension/detectron2/docs/modules/index.rst
|
367 |
+
mhp_extension/detectron2/docs/modules/layers.rst
|
368 |
+
mhp_extension/detectron2/docs/modules/modeling.rst
|
369 |
+
mhp_extension/detectron2/docs/modules/model_zoo.rst
|
370 |
+
mhp_extension/detectron2/docs/modules/solver.rst
|
371 |
+
mhp_extension/detectron2/docs/modules/structures.rst
|
372 |
+
mhp_extension/detectron2/docs/modules/utils.rst
|
373 |
+
mhp_extension/detectron2/docs/notes/benchmarks.md
|
374 |
+
mhp_extension/detectron2/docs/notes/changelog.md
|
375 |
+
mhp_extension/detectron2/docs/notes/compatibility.md
|
376 |
+
mhp_extension/detectron2/docs/notes/contributing.md
|
377 |
+
mhp_extension/detectron2/docs/notes/index.rst
|
378 |
+
mhp_extension/detectron2/docs/README.md
|
379 |
+
mhp_extension/detectron2/docs/tutorials/builtin_datasets.md
|
380 |
+
mhp_extension/detectron2/docs/tutorials/configs.md
|
381 |
+
mhp_extension/detectron2/docs/tutorials/data_loading.md
|
382 |
+
mhp_extension/detectron2/docs/tutorials/datasets.md
|
383 |
+
mhp_extension/detectron2/docs/tutorials/deployment.md
|
384 |
+
mhp_extension/detectron2/docs/tutorials/evaluation.md
|
385 |
+
mhp_extension/detectron2/docs/tutorials/extend.md
|
386 |
+
mhp_extension/detectron2/docs/tutorials/getting_started.md
|
387 |
+
mhp_extension/detectron2/docs/tutorials/index.rst
|
388 |
+
mhp_extension/detectron2/docs/tutorials/install.md
|
389 |
+
mhp_extension/detectron2/docs/tutorials/models.md
|
390 |
+
mhp_extension/detectron2/docs/tutorials/README.md
|
391 |
+
mhp_extension/detectron2/docs/tutorials/training.md
|
392 |
+
mhp_extension/detectron2/docs/tutorials/write-models.md
|
393 |
+
mhp_extension/detectron2/.flake8
|
394 |
+
mhp_extension/detectron2/GETTING_STARTED.md
|
395 |
+
mhp_extension/detectron2/.gitignore
|
396 |
+
mhp_extension/detectron2/INSTALL.md
|
397 |
+
mhp_extension/detectron2/LICENSE
|
398 |
+
mhp_extension/detectron2/MODEL_ZOO.md
|
399 |
+
mhp_extension/detectron2/projects/DensePose/apply_net.py
|
400 |
+
mhp_extension/detectron2/projects/DensePose/configs/Base-DensePose-RCNN-FPN.yaml
|
401 |
+
mhp_extension/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_DL_s1x.yaml
|
402 |
+
mhp_extension/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_DL_WC1_s1x.yaml
|
403 |
+
mhp_extension/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_DL_WC2_s1x.yaml
|
404 |
+
mhp_extension/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_s1x_legacy.yaml
|
405 |
+
mhp_extension/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_s1x.yaml
|
406 |
+
mhp_extension/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_WC1_s1x.yaml
|
407 |
+
mhp_extension/detectron2/projects/DensePose/configs/densepose_rcnn_R_101_FPN_WC2_s1x.yaml
|
408 |
+
mhp_extension/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_DL_s1x.yaml
|
409 |
+
mhp_extension/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_DL_WC1_s1x.yaml
|
410 |
+
mhp_extension/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_DL_WC2_s1x.yaml
|
411 |
+
mhp_extension/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_s1x_legacy.yaml
|
412 |
+
mhp_extension/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_s1x.yaml
|
413 |
+
mhp_extension/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_WC1_s1x.yaml
|
414 |
+
mhp_extension/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_WC2_s1x.yaml
|
415 |
+
mhp_extension/detectron2/projects/DensePose/configs/evolution/Base-RCNN-FPN-MC.yaml
|
416 |
+
mhp_extension/detectron2/projects/DensePose/configs/evolution/faster_rcnn_R_50_FPN_1x_MC.yaml
|
417 |
+
mhp_extension/detectron2/projects/DensePose/configs/quick_schedules/densepose_rcnn_R_50_FPN_DL_instant_test.yaml
|
418 |
+
mhp_extension/detectron2/projects/DensePose/configs/quick_schedules/densepose_rcnn_R_50_FPN_inference_acc_test.yaml
|
419 |
+
mhp_extension/detectron2/projects/DensePose/configs/quick_schedules/densepose_rcnn_R_50_FPN_instant_test.yaml
|
420 |
+
mhp_extension/detectron2/projects/DensePose/configs/quick_schedules/densepose_rcnn_R_50_FPN_training_acc_test.yaml
|
421 |
+
mhp_extension/detectron2/projects/DensePose/configs/quick_schedules/densepose_rcnn_R_50_FPN_TTA_inference_acc_test.yaml
|
422 |
+
mhp_extension/detectron2/projects/DensePose/configs/quick_schedules/densepose_rcnn_R_50_FPN_WC1_instant_test.yaml
|
423 |
+
mhp_extension/detectron2/projects/DensePose/configs/quick_schedules/densepose_rcnn_R_50_FPN_WC2_instant_test.yaml
|
424 |
+
mhp_extension/detectron2/projects/DensePose/densepose/config.py
|
425 |
+
mhp_extension/detectron2/projects/DensePose/densepose/data/build.py
|
426 |
+
mhp_extension/detectron2/projects/DensePose/densepose/data/dataset_mapper.py
|
427 |
+
mhp_extension/detectron2/projects/DensePose/densepose/data/datasets/builtin.py
|
428 |
+
mhp_extension/detectron2/projects/DensePose/densepose/data/datasets/coco.py
|
429 |
+
mhp_extension/detectron2/projects/DensePose/densepose/data/datasets/__init__.py
|
430 |
+
mhp_extension/detectron2/projects/DensePose/densepose/data/__init__.py
|
431 |
+
mhp_extension/detectron2/projects/DensePose/densepose/data/structures.py
|
432 |
+
mhp_extension/detectron2/projects/DensePose/densepose/densepose_coco_evaluation.py
|
433 |
+
mhp_extension/detectron2/projects/DensePose/densepose/densepose_head.py
|
434 |
+
mhp_extension/detectron2/projects/DensePose/densepose/evaluator.py
|
435 |
+
mhp_extension/detectron2/projects/DensePose/densepose/__init__.py
|
436 |
+
mhp_extension/detectron2/projects/DensePose/densepose/modeling/test_time_augmentation.py
|
437 |
+
mhp_extension/detectron2/projects/DensePose/densepose/roi_head.py
|
438 |
+
mhp_extension/detectron2/projects/DensePose/densepose/utils/dbhelper.py
|
439 |
+
mhp_extension/detectron2/projects/DensePose/densepose/utils/logger.py
|
440 |
+
mhp_extension/detectron2/projects/DensePose/densepose/utils/transform.py
|
441 |
+
mhp_extension/detectron2/projects/DensePose/densepose/vis/base.py
|
442 |
+
mhp_extension/detectron2/projects/DensePose/densepose/vis/bounding_box.py
|
443 |
+
mhp_extension/detectron2/projects/DensePose/densepose/vis/densepose.py
|
444 |
+
mhp_extension/detectron2/projects/DensePose/densepose/vis/extractor.py
|
445 |
+
mhp_extension/detectron2/projects/DensePose/dev/README.md
|
446 |
+
mhp_extension/detectron2/projects/DensePose/dev/run_inference_tests.sh
|
447 |
+
mhp_extension/detectron2/projects/DensePose/dev/run_instant_tests.sh
|
448 |
+
mhp_extension/detectron2/projects/DensePose/doc/GETTING_STARTED.md
|
449 |
+
mhp_extension/detectron2/projects/DensePose/doc/MODEL_ZOO.md
|
450 |
+
mhp_extension/detectron2/projects/DensePose/doc/TOOL_APPLY_NET.md
|
451 |
+
mhp_extension/detectron2/projects/DensePose/doc/TOOL_QUERY_DB.md
|
452 |
+
mhp_extension/detectron2/projects/DensePose/query_db.py
|
453 |
+
mhp_extension/detectron2/projects/DensePose/README.md
|
454 |
+
mhp_extension/detectron2/projects/DensePose/tests/common.py
|
455 |
+
mhp_extension/detectron2/projects/DensePose/tests/test_model_e2e.py
|
456 |
+
mhp_extension/detectron2/projects/DensePose/tests/test_setup.py
|
457 |
+
mhp_extension/detectron2/projects/DensePose/tests/test_structures.py
|
458 |
+
mhp_extension/detectron2/projects/DensePose/train_net.py
|
459 |
+
mhp_extension/detectron2/projects/PointRend/configs/InstanceSegmentation/Base-PointRend-RCNN-FPN.yaml
|
460 |
+
mhp_extension/detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_cityscapes.yaml
|
461 |
+
mhp_extension/detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml
|
462 |
+
mhp_extension/detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml
|
463 |
+
mhp_extension/detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_parsing.yaml
|
464 |
+
mhp_extension/detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_X_101_32x8d_FPN_3x_parsing.yaml
|
465 |
+
mhp_extension/detectron2/projects/PointRend/configs/SemanticSegmentation/Base-PointRend-Semantic-FPN.yaml
|
466 |
+
mhp_extension/detectron2/projects/PointRend/configs/SemanticSegmentation/pointrend_semantic_R_101_FPN_1x_cityscapes.yaml
|
467 |
+
mhp_extension/detectron2/projects/PointRend/configs/SemanticSegmentation/pointrend_semantic_R_50_FPN_1x_coco.yaml
|
468 |
+
mhp_extension/detectron2/projects/PointRend/finetune_net.py
|
469 |
+
mhp_extension/detectron2/projects/PointRend/logs/hadoop.kylin.libdfs.log
|
470 |
+
mhp_extension/detectron2/projects/PointRend/point_rend/coarse_mask_head.py
|
471 |
+
mhp_extension/detectron2/projects/PointRend/point_rend/color_augmentation.py
|
472 |
+
mhp_extension/detectron2/projects/PointRend/point_rend/config.py
|
473 |
+
mhp_extension/detectron2/projects/PointRend/point_rend/dataset_mapper.py
|
474 |
+
mhp_extension/detectron2/projects/PointRend/point_rend/__init__.py
|
475 |
+
mhp_extension/detectron2/projects/PointRend/point_rend/point_features.py
|
476 |
+
mhp_extension/detectron2/projects/PointRend/point_rend/point_head.py
|
477 |
+
mhp_extension/detectron2/projects/PointRend/point_rend/roi_heads.py
|
478 |
+
mhp_extension/detectron2/projects/PointRend/point_rend/semantic_seg.py
|
479 |
+
mhp_extension/detectron2/projects/PointRend/README.md
|
480 |
+
mhp_extension/detectron2/projects/PointRend/run.sh
|
481 |
+
mhp_extension/detectron2/projects/PointRend/train_net.py
|
482 |
+
mhp_extension/detectron2/projects/README.md
|
483 |
+
mhp_extension/detectron2/projects/TensorMask/configs/Base-TensorMask.yaml
|
484 |
+
mhp_extension/detectron2/projects/TensorMask/configs/tensormask_R_50_FPN_1x.yaml
|
485 |
+
mhp_extension/detectron2/projects/TensorMask/configs/tensormask_R_50_FPN_6x.yaml
|
486 |
+
mhp_extension/detectron2/projects/TensorMask/README.md
|
487 |
+
mhp_extension/detectron2/projects/TensorMask/setup.py
|
488 |
+
mhp_extension/detectron2/projects/TensorMask/tensormask/arch.py
|
489 |
+
mhp_extension/detectron2/projects/TensorMask/tensormask/config.py
|
490 |
+
mhp_extension/detectron2/projects/TensorMask/tensormask/__init__.py
|
491 |
+
mhp_extension/detectron2/projects/TensorMask/tensormask/layers/csrc/SwapAlign2Nat/SwapAlign2Nat_cuda.cu
|
492 |
+
mhp_extension/detectron2/projects/TensorMask/tensormask/layers/csrc/SwapAlign2Nat/SwapAlign2Nat.h
|
493 |
+
mhp_extension/detectron2/projects/TensorMask/tensormask/layers/csrc/vision.cpp
|
494 |
+
mhp_extension/detectron2/projects/TensorMask/tensormask/layers/__init__.py
|
495 |
+
mhp_extension/detectron2/projects/TensorMask/tensormask/layers/swap_align2nat.py
|
496 |
+
mhp_extension/detectron2/projects/TensorMask/tests/__init__.py
|
497 |
+
mhp_extension/detectron2/projects/TensorMask/tests/test_swap_align2nat.py
|
498 |
+
mhp_extension/detectron2/projects/TensorMask/train_net.py
|
499 |
+
mhp_extension/detectron2/projects/TridentNet/configs/Base-TridentNet-Fast-C4.yaml
|
500 |
+
mhp_extension/detectron2/projects/TridentNet/configs/tridentnet_fast_R_101_C4_3x.yaml
|
501 |
+
mhp_extension/detectron2/projects/TridentNet/configs/tridentnet_fast_R_50_C4_1x.yaml
|
502 |
+
mhp_extension/detectron2/projects/TridentNet/configs/tridentnet_fast_R_50_C4_3x.yaml
|
503 |
+
mhp_extension/detectron2/projects/TridentNet/README.md
|
504 |
+
mhp_extension/detectron2/projects/TridentNet/train_net.py
|
505 |
+
mhp_extension/detectron2/projects/TridentNet/tridentnet/config.py
|
506 |
+
mhp_extension/detectron2/projects/TridentNet/tridentnet/__init__.py
|
507 |
+
mhp_extension/detectron2/projects/TridentNet/tridentnet/trident_backbone.py
|
508 |
+
mhp_extension/detectron2/projects/TridentNet/tridentnet/trident_conv.py
|
509 |
+
mhp_extension/detectron2/projects/TridentNet/tridentnet/trident_rcnn.py
|
510 |
+
mhp_extension/detectron2/projects/TridentNet/tridentnet/trident_rpn.py
|
511 |
+
mhp_extension/detectron2/README.md
|
512 |
+
mhp_extension/detectron2/setup.cfg
|
513 |
+
mhp_extension/detectron2/setup.py
|
514 |
+
mhp_extension/detectron2/tests/data/__init__.py
|
515 |
+
mhp_extension/detectron2/tests/data/test_coco.py
|
516 |
+
mhp_extension/detectron2/tests/data/test_detection_utils.py
|
517 |
+
mhp_extension/detectron2/tests/data/test_rotation_transform.py
|
518 |
+
mhp_extension/detectron2/tests/data/test_sampler.py
|
519 |
+
mhp_extension/detectron2/tests/data/test_transforms.py
|
520 |
+
mhp_extension/detectron2/tests/__init__.py
|
521 |
+
mhp_extension/detectron2/tests/layers/__init__.py
|
522 |
+
mhp_extension/detectron2/tests/layers/test_mask_ops.py
|
523 |
+
mhp_extension/detectron2/tests/layers/test_nms_rotated.py
|
524 |
+
mhp_extension/detectron2/tests/layers/test_roi_align.py
|
525 |
+
mhp_extension/detectron2/tests/layers/test_roi_align_rotated.py
|
526 |
+
mhp_extension/detectron2/tests/modeling/__init__.py
|
527 |
+
mhp_extension/detectron2/tests/modeling/test_anchor_generator.py
|
528 |
+
mhp_extension/detectron2/tests/modeling/test_box2box_transform.py
|
529 |
+
mhp_extension/detectron2/tests/modeling/test_fast_rcnn.py
|
530 |
+
mhp_extension/detectron2/tests/modeling/test_model_e2e.py
|
531 |
+
mhp_extension/detectron2/tests/modeling/test_roi_heads.py
|
532 |
+
mhp_extension/detectron2/tests/modeling/test_roi_pooler.py
|
533 |
+
mhp_extension/detectron2/tests/modeling/test_rpn.py
|
534 |
+
mhp_extension/detectron2/tests/README.md
|
535 |
+
mhp_extension/detectron2/tests/structures/__init__.py
|
536 |
+
mhp_extension/detectron2/tests/structures/test_boxes.py
|
537 |
+
mhp_extension/detectron2/tests/structures/test_imagelist.py
|
538 |
+
mhp_extension/detectron2/tests/structures/test_instances.py
|
539 |
+
mhp_extension/detectron2/tests/structures/test_rotated_boxes.py
|
540 |
+
mhp_extension/detectron2/tests/test_checkpoint.py
|
541 |
+
mhp_extension/detectron2/tests/test_config.py
|
542 |
+
mhp_extension/detectron2/tests/test_export_caffe2.py
|
543 |
+
mhp_extension/detectron2/tests/test_model_analysis.py
|
544 |
+
mhp_extension/detectron2/tests/test_model_zoo.py
|
545 |
+
mhp_extension/detectron2/tests/test_visualizer.py
|
546 |
+
mhp_extension/detectron2/tools/analyze_model.py
|
547 |
+
mhp_extension/detectron2/tools/benchmark.py
|
548 |
+
mhp_extension/detectron2/tools/convert-torchvision-to-d2.py
|
549 |
+
mhp_extension/detectron2/tools/deploy/caffe2_converter.py
|
550 |
+
mhp_extension/detectron2/tools/deploy/caffe2_mask_rcnn.cpp
|
551 |
+
mhp_extension/detectron2/tools/deploy/README.md
|
552 |
+
mhp_extension/detectron2/tools/deploy/torchscript_traced_mask_rcnn.cpp
|
553 |
+
mhp_extension/detectron2/tools/finetune_net.py
|
554 |
+
mhp_extension/detectron2/tools/inference.sh
|
555 |
+
mhp_extension/detectron2/tools/plain_train_net.py
|
556 |
+
mhp_extension/detectron2/tools/README.md
|
557 |
+
mhp_extension/detectron2/tools/run.sh
|
558 |
+
mhp_extension/detectron2/tools/train_net.py
|
559 |
+
mhp_extension/detectron2/tools/visualize_data.py
|
560 |
+
mhp_extension/detectron2/tools/visualize_json_results.py
|
561 |
+
mhp_extension/global_local_parsing/global_local_datasets.py
|
562 |
+
mhp_extension/global_local_parsing/global_local_evaluate.py
|
563 |
+
mhp_extension/global_local_parsing/global_local_train.py
|
564 |
+
mhp_extension/global_local_parsing/make_id_list.py
|
565 |
+
mhp_extension/logits_fusion.py
|
566 |
+
mhp_extension/make_crop_and_mask_w_mask_nms.py
|
567 |
+
mhp_extension/README.md
|
568 |
+
mhp_extension/scripts/make_coco_style_annotation.sh
|
569 |
+
mhp_extension/scripts/make_crop.sh
|
570 |
+
mhp_extension/scripts/parsing_fusion.sh
|
571 |
+
modules/bn.py
|
572 |
+
modules/deeplab.py
|
573 |
+
modules/dense.py
|
574 |
+
modules/functions.py
|
575 |
+
modules/__init__.py
|
576 |
+
modules/misc.py
|
577 |
+
modules/residual.py
|
578 |
+
modules/src/checks.h
|
579 |
+
modules/src/inplace_abn.cpp
|
580 |
+
modules/src/inplace_abn_cpu.cpp
|
581 |
+
modules/src/inplace_abn_cuda.cu
|
582 |
+
modules/src/inplace_abn_cuda_half.cu
|
583 |
+
modules/src/inplace_abn.h
|
584 |
+
modules/src/utils/checks.h
|
585 |
+
modules/src/utils/common.h
|
586 |
+
modules/src/utils/cuda.cuh
|
587 |
+
networks/AugmentCE2P.py
|
588 |
+
networks/backbone/mobilenetv2.py
|
589 |
+
networks/backbone/resnet.py
|
590 |
+
networks/backbone/resnext.py
|
591 |
+
networks/context_encoding/aspp.py
|
592 |
+
networks/context_encoding/ocnet.py
|
593 |
+
networks/context_encoding/psp.py
|
594 |
+
networks/__init__.py
|
595 |
+
README.md
|
596 |
+
requirements.txt
|
597 |
+
simple_extractor.py
|
598 |
+
training_code/MVANet/README.org
|
599 |
+
train.py
|
600 |
+
utils/consistency_loss.py
|
601 |
+
utils/criterion.py
|
602 |
+
utils/encoding.py
|
603 |
+
utils/__init__.py
|
604 |
+
utils/kl_loss.py
|
605 |
+
utils/lovasz_softmax.py
|
606 |
+
utils/miou.py
|
607 |
+
utils/schp.py
|
608 |
+
utils/soft_dice_loss.py
|
609 |
+
utils/transforms.py
|
610 |
+
utils/warmup_scheduler.py
|
611 |
+
#+end_src
|
612 |
+
|
613 |
+
* List of files to remove
|
614 |
+
#+begin_src conf :tangle ./rm.txt
|
615 |
+
ComfyUI_MVANet/__pycache__/__init__.cpython-310.pyc
|
616 |
+
ComfyUI_MVANet/#README.org#
|
617 |
+
ComfyUI_MVANet/.#README.org
|
618 |
+
ComfyUI_MVANet/README.org~
|
619 |
+
ComfyUI_MVANet/.README.org.~undo-tree~
|
620 |
+
#main.org#
|
621 |
+
.#main.org
|
622 |
+
main.org~
|
623 |
+
.main.org.~undo-tree~
|
624 |
+
.README.md.~undo-tree~
|
625 |
+
ComfyUI_MVANet/.#README.org
|
626 |
+
ComfyUI_AEMatter/__pycache__/__init__.cpython-310.pyc
|
627 |
+
ComfyUI_AEMatter/AEMatter.class.py
|
628 |
+
ComfyUI_AEMatter/AEMatter.execute.py
|
629 |
+
ComfyUI_AEMatter/AEMatter.function.py
|
630 |
+
ComfyUI_AEMatter/AEMatter.import.py
|
631 |
+
ComfyUI_MVANet/MVANet_inference.class.py
|
632 |
+
ComfyUI_MVANet/MVANet_inference.execute.py
|
633 |
+
ComfyUI_MVANet/MVANet_inference.function.py
|
634 |
+
ComfyUI_MVANet/MVANet_inference.import.py
|
635 |
+
ComfyUI_MVANet/MVANet_inference.unify.sh
|
636 |
+
ComfyUI_AEMatter/AEMatter.unify.sh
|
637 |
+
git_add.txt
|
638 |
+
git_lfs_track.txt
|
639 |
+
gitignore.txt
|
640 |
+
rm.txt
|
641 |
+
work.sh
|
642 |
+
#+end_src
|
643 |
+
|
644 |
+
* List of patterns to ignore
|
645 |
+
#+begin_src conf :tangle ./gitignore.txt
|
646 |
+
log/
|
647 |
+
pretrain_model/
|
648 |
+
commit_and_push.sh
|
649 |
+
#+end_src
|
650 |
+
|
651 |
+
* Main script to do everything
|
652 |
+
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./work.sh
|
653 |
+
do_ignore(){
|
654 |
+
'sed' 's@^@/@g' './rm.txt';
|
655 |
+
'cat' './gitignore.txt';
|
656 |
+
}
|
657 |
+
|
658 |
+
do_add(){
|
659 |
+
'sed' 's@^@("git" "lfs" "track" "./@g;s@$@");@g' './git_lfs_track.txt' ;
|
660 |
+
'cat' './git_add.txt' './git_lfs_track.txt' | \
|
661 |
+
'sed' 's@^@("git" "add" "./@g;s@$@");@g' ;
|
662 |
+
}
|
663 |
+
|
664 |
+
do_rm(){
|
665 |
+
'sed' 's@^@("rm" "-vf" "--" "./@g ; s@$@");@g' './rm.txt' ;
|
666 |
+
}
|
667 |
+
|
668 |
+
all_commands(){
|
669 |
+
do_add
|
670 |
+
do_rm
|
671 |
+
}
|
672 |
+
|
673 |
+
do_all(){
|
674 |
+
do_ignore > './.gitignore'
|
675 |
+
all_commands | sh
|
676 |
+
}
|
677 |
+
|
678 |
+
do_all
|
679 |
+
#+end_src
|
680 |
+
|
training_code/MVANet/README.org
ADDED
@@ -0,0 +1,2338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
* Requirements
|
2 |
+
#+begin_src conf :tangle ./requirements.txt
|
3 |
+
einops
|
4 |
+
pillow
|
5 |
+
prodigyopt
|
6 |
+
tensorboard
|
7 |
+
timm
|
8 |
+
torch
|
9 |
+
torchvision
|
10 |
+
#+end_src
|
11 |
+
|
12 |
+
* Download trained model
|
13 |
+
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./download.sh
|
14 |
+
"efficient_download.sh" \
|
15 |
+
'https://huggingface.co/aravindhv10/Self-Correction-Human-Parsing/resolve/main/checkpoints/Model_80.pth' \
|
16 |
+
'Model_80.pth' \
|
17 |
+
'6ca28df33ba8476ac13be329a1b1b8b390da5d8042638fb124df3c067c2fe45bccde4366643b830066cbe0164ddbb978a1987a398b4a987f99d908903b44774f' \
|
18 |
+
"${HOME}/GITHUB/aravind-h-v/dreambooth_experiments/cloth_segmentation/MVANet_Train/pretrained_model/Model_80.pth" \
|
19 |
+
;
|
20 |
+
#+end_src
|
21 |
+
|
22 |
+
* Swin code
|
23 |
+
|
24 |
+
** swin.import.py
|
25 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.import.py
|
26 |
+
import os
|
27 |
+
os.environ["CUDA_VISIBLE_DEVICES"] ='0'
|
28 |
+
#+end_src
|
29 |
+
|
30 |
+
** swin.import.py
|
31 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.import.py
|
32 |
+
import numpy as np
|
33 |
+
#+end_src
|
34 |
+
|
35 |
+
** swin.import.py
|
36 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.import.py
|
37 |
+
import torch
|
38 |
+
import torch.nn as nn
|
39 |
+
import torch.nn.functional as F
|
40 |
+
import torch.utils.checkpoint as checkpoint
|
41 |
+
#+end_src
|
42 |
+
|
43 |
+
** swin.import.py
|
44 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.import.py
|
45 |
+
from timm.models import load_checkpoint
|
46 |
+
from timm.models.layers import DropPath
|
47 |
+
from timm.models.layers import to_2tuple
|
48 |
+
from timm.models.layers import trunc_normal_
|
49 |
+
|
50 |
+
# from mmdet.utils import get_root_logger
|
51 |
+
#+end_src
|
52 |
+
|
53 |
+
** swin.function.py
|
54 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.function.py
|
55 |
+
def window_partition(x, window_size):
|
56 |
+
"""
|
57 |
+
Args:
|
58 |
+
x: (B, H, W, C)
|
59 |
+
window_size (int): window size
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
windows: (num_windows*B, window_size, window_size, C)
|
63 |
+
"""
|
64 |
+
B, H, W, C = x.shape
|
65 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size,
|
66 |
+
C)
|
67 |
+
windows = x.permute(0, 1, 3, 2, 4,
|
68 |
+
5).contiguous().view(-1, window_size, window_size, C)
|
69 |
+
return windows
|
70 |
+
|
71 |
+
|
72 |
+
def window_reverse(windows, window_size, H, W):
|
73 |
+
"""
|
74 |
+
Args:
|
75 |
+
windows: (num_windows*B, window_size, window_size, C)
|
76 |
+
window_size (int): Window size
|
77 |
+
H (int): Height of image
|
78 |
+
W (int): Width of image
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
x: (B, H, W, C)
|
82 |
+
"""
|
83 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
84 |
+
x = windows.view(B, H // window_size, W // window_size, window_size,
|
85 |
+
window_size, -1)
|
86 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
87 |
+
return x
|
88 |
+
|
89 |
+
|
90 |
+
def SwinT(pretrained=True):
|
91 |
+
model = SwinTransformer(embed_dim=96,
|
92 |
+
depths=[2, 2, 6, 2],
|
93 |
+
num_heads=[3, 6, 12, 24],
|
94 |
+
window_size=7)
|
95 |
+
# if pretrained is True:
|
96 |
+
# model.load_state_dict(torch.load(
|
97 |
+
# 'data/backbone_ckpt/swin_tiny_patch4_window7_224.pth',
|
98 |
+
# map_location='cpu')['model'],
|
99 |
+
# strict=False)
|
100 |
+
|
101 |
+
return model
|
102 |
+
|
103 |
+
|
104 |
+
def SwinS(pretrained=True):
|
105 |
+
model = SwinTransformer(embed_dim=96,
|
106 |
+
depths=[2, 2, 18, 2],
|
107 |
+
num_heads=[3, 6, 12, 24],
|
108 |
+
window_size=7)
|
109 |
+
# if pretrained is True:
|
110 |
+
# model.load_state_dict(torch.load(
|
111 |
+
# 'data/backbone_ckpt/swin_small_patch4_window7_224.pth',
|
112 |
+
# map_location='cpu')['model'],
|
113 |
+
# strict=False)
|
114 |
+
|
115 |
+
return model
|
116 |
+
|
117 |
+
|
118 |
+
def SwinB(pretrained=True):
|
119 |
+
model = SwinTransformer(embed_dim=128,
|
120 |
+
depths=[2, 2, 18, 2],
|
121 |
+
num_heads=[4, 8, 16, 32],
|
122 |
+
window_size=12)
|
123 |
+
# if pretrained is True:
|
124 |
+
# model.load_state_dict(
|
125 |
+
# torch.load('./swin_base_patch4_window12_384_22kto1k.pth',
|
126 |
+
# map_location='cpu')['model'],
|
127 |
+
# strict=False)
|
128 |
+
|
129 |
+
return model
|
130 |
+
|
131 |
+
|
132 |
+
def SwinL(pretrained=True):
|
133 |
+
model = SwinTransformer(embed_dim=192,
|
134 |
+
depths=[2, 2, 18, 2],
|
135 |
+
num_heads=[6, 12, 24, 48],
|
136 |
+
window_size=12)
|
137 |
+
# if pretrained is True:
|
138 |
+
# model.load_state_dict(torch.load(
|
139 |
+
# 'data/backbone_ckpt/swin_large_patch4_window12_384_22kto1k.pth',
|
140 |
+
# map_location='cpu')['model'],
|
141 |
+
# strict=False)
|
142 |
+
|
143 |
+
return model
|
144 |
+
#+end_src
|
145 |
+
|
146 |
+
** swin.class.py
|
147 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.class.py
|
148 |
+
class Mlp(nn.Module):
|
149 |
+
""" Multilayer perceptron."""
|
150 |
+
|
151 |
+
def __init__(self,
|
152 |
+
in_features,
|
153 |
+
hidden_features=None,
|
154 |
+
out_features=None,
|
155 |
+
act_layer=nn.GELU,
|
156 |
+
drop=0.):
|
157 |
+
super().__init__()
|
158 |
+
out_features = out_features or in_features
|
159 |
+
hidden_features = hidden_features or in_features
|
160 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
161 |
+
self.act = act_layer()
|
162 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
163 |
+
self.drop = nn.Dropout(drop)
|
164 |
+
|
165 |
+
def forward(self, x):
|
166 |
+
x = self.fc1(x)
|
167 |
+
x = self.act(x)
|
168 |
+
x = self.drop(x)
|
169 |
+
x = self.fc2(x)
|
170 |
+
x = self.drop(x)
|
171 |
+
return x
|
172 |
+
|
173 |
+
|
174 |
+
class WindowAttention(nn.Module):
|
175 |
+
""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
176 |
+
It supports both of shifted and non-shifted window.
|
177 |
+
|
178 |
+
Args:
|
179 |
+
dim (int): Number of input channels.
|
180 |
+
window_size (tuple[int]): The height and width of the window.
|
181 |
+
num_heads (int): Number of attention heads.
|
182 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
183 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
184 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
185 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
186 |
+
"""
|
187 |
+
|
188 |
+
def __init__(self,
|
189 |
+
dim,
|
190 |
+
window_size,
|
191 |
+
num_heads,
|
192 |
+
qkv_bias=True,
|
193 |
+
qk_scale=None,
|
194 |
+
attn_drop=0.,
|
195 |
+
proj_drop=0.):
|
196 |
+
|
197 |
+
super().__init__()
|
198 |
+
self.dim = dim
|
199 |
+
self.window_size = window_size # Wh, Ww
|
200 |
+
self.num_heads = num_heads
|
201 |
+
head_dim = dim // num_heads
|
202 |
+
self.scale = qk_scale or head_dim**-0.5
|
203 |
+
|
204 |
+
# define a parameter table of relative position bias
|
205 |
+
self.relative_position_bias_table = nn.Parameter(
|
206 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
|
207 |
+
num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
208 |
+
|
209 |
+
# get pair-wise relative position index for each token inside the window
|
210 |
+
coords_h = torch.arange(self.window_size[0])
|
211 |
+
coords_w = torch.arange(self.window_size[1])
|
212 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
213 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
214 |
+
relative_coords = coords_flatten[:, :,
|
215 |
+
None] - coords_flatten[:,
|
216 |
+
None, :] # 2, Wh*Ww, Wh*Ww
|
217 |
+
relative_coords = relative_coords.permute(
|
218 |
+
1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
219 |
+
relative_coords[:, :,
|
220 |
+
0] += self.window_size[0] - 1 # shift to start from 0
|
221 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
222 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
223 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
224 |
+
self.register_buffer("relative_position_index",
|
225 |
+
relative_position_index)
|
226 |
+
|
227 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
228 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
229 |
+
self.proj = nn.Linear(dim, dim)
|
230 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
231 |
+
|
232 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
233 |
+
self.softmax = nn.Softmax(dim=-1)
|
234 |
+
|
235 |
+
def forward(self, x, mask=None):
|
236 |
+
""" Forward function.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
x: input features with shape of (num_windows*B, N, C)
|
240 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
241 |
+
"""
|
242 |
+
B_, N, C = x.shape
|
243 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads,
|
244 |
+
C // self.num_heads).permute(2, 0, 3, 1, 4)
|
245 |
+
q, k, v = qkv[0], qkv[1], qkv[
|
246 |
+
2] # make torchscript happy (cannot use tensor as tuple)
|
247 |
+
|
248 |
+
q = q * self.scale
|
249 |
+
attn = (q @ k.transpose(-2, -1))
|
250 |
+
|
251 |
+
relative_position_bias = self.relative_position_bias_table[
|
252 |
+
self.relative_position_index.view(-1)].view(
|
253 |
+
self.window_size[0] * self.window_size[1],
|
254 |
+
self.window_size[0] * self.window_size[1],
|
255 |
+
-1) # Wh*Ww,Wh*Ww,nH
|
256 |
+
relative_position_bias = relative_position_bias.permute(
|
257 |
+
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
258 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
259 |
+
|
260 |
+
if mask is not None:
|
261 |
+
nW = mask.shape[0]
|
262 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N,
|
263 |
+
N) + mask.unsqueeze(1).unsqueeze(0)
|
264 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
265 |
+
attn = self.softmax(attn)
|
266 |
+
else:
|
267 |
+
attn = self.softmax(attn)
|
268 |
+
|
269 |
+
attn = self.attn_drop(attn)
|
270 |
+
|
271 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
272 |
+
x = self.proj(x)
|
273 |
+
x = self.proj_drop(x)
|
274 |
+
return x
|
275 |
+
|
276 |
+
|
277 |
+
class SwinTransformerBlock(nn.Module):
|
278 |
+
""" Swin Transformer Block.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
dim (int): Number of input channels.
|
282 |
+
num_heads (int): Number of attention heads.
|
283 |
+
window_size (int): Window size.
|
284 |
+
shift_size (int): Shift size for SW-MSA.
|
285 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
286 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
287 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
288 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
289 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
290 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
291 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
292 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
293 |
+
"""
|
294 |
+
|
295 |
+
def __init__(self,
|
296 |
+
dim,
|
297 |
+
num_heads,
|
298 |
+
window_size=7,
|
299 |
+
shift_size=0,
|
300 |
+
mlp_ratio=4.,
|
301 |
+
qkv_bias=True,
|
302 |
+
qk_scale=None,
|
303 |
+
drop=0.,
|
304 |
+
attn_drop=0.,
|
305 |
+
drop_path=0.,
|
306 |
+
act_layer=nn.GELU,
|
307 |
+
norm_layer=nn.LayerNorm):
|
308 |
+
super().__init__()
|
309 |
+
self.dim = dim
|
310 |
+
self.num_heads = num_heads
|
311 |
+
self.window_size = window_size
|
312 |
+
self.shift_size = shift_size
|
313 |
+
self.mlp_ratio = mlp_ratio
|
314 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
315 |
+
|
316 |
+
self.norm1 = norm_layer(dim)
|
317 |
+
self.attn = WindowAttention(dim,
|
318 |
+
window_size=to_2tuple(self.window_size),
|
319 |
+
num_heads=num_heads,
|
320 |
+
qkv_bias=qkv_bias,
|
321 |
+
qk_scale=qk_scale,
|
322 |
+
attn_drop=attn_drop,
|
323 |
+
proj_drop=drop)
|
324 |
+
|
325 |
+
self.drop_path = DropPath(
|
326 |
+
drop_path) if drop_path > 0. else nn.Identity()
|
327 |
+
self.norm2 = norm_layer(dim)
|
328 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
329 |
+
self.mlp = Mlp(in_features=dim,
|
330 |
+
hidden_features=mlp_hidden_dim,
|
331 |
+
act_layer=act_layer,
|
332 |
+
drop=drop)
|
333 |
+
|
334 |
+
self.H = None
|
335 |
+
self.W = None
|
336 |
+
|
337 |
+
def forward(self, x, mask_matrix):
|
338 |
+
""" Forward function.
|
339 |
+
|
340 |
+
Args:
|
341 |
+
x: Input feature, tensor size (B, H*W, C).
|
342 |
+
H, W: Spatial resolution of the input feature.
|
343 |
+
mask_matrix: Attention mask for cyclic shift.
|
344 |
+
"""
|
345 |
+
B, L, C = x.shape
|
346 |
+
H, W = self.H, self.W
|
347 |
+
assert L == H * W, "input feature has wrong size"
|
348 |
+
|
349 |
+
shortcut = x
|
350 |
+
x = self.norm1(x)
|
351 |
+
x = x.view(B, H, W, C)
|
352 |
+
|
353 |
+
# pad feature maps to multiples of window size
|
354 |
+
pad_l = pad_t = 0
|
355 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
356 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
357 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
358 |
+
_, Hp, Wp, _ = x.shape
|
359 |
+
|
360 |
+
# cyclic shift
|
361 |
+
if self.shift_size > 0:
|
362 |
+
shifted_x = torch.roll(x,
|
363 |
+
shifts=(-self.shift_size, -self.shift_size),
|
364 |
+
dims=(1, 2))
|
365 |
+
attn_mask = mask_matrix
|
366 |
+
else:
|
367 |
+
shifted_x = x
|
368 |
+
attn_mask = None
|
369 |
+
|
370 |
+
# partition windows
|
371 |
+
x_windows = window_partition(
|
372 |
+
shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
373 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size,
|
374 |
+
C) # nW*B, window_size*window_size, C
|
375 |
+
|
376 |
+
# W-MSA/SW-MSA
|
377 |
+
attn_windows = self.attn(
|
378 |
+
x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
379 |
+
|
380 |
+
# merge windows
|
381 |
+
attn_windows = attn_windows.view(-1, self.window_size,
|
382 |
+
self.window_size, C)
|
383 |
+
shifted_x = window_reverse(attn_windows, self.window_size, Hp,
|
384 |
+
Wp) # B H' W' C
|
385 |
+
|
386 |
+
# reverse cyclic shift
|
387 |
+
if self.shift_size > 0:
|
388 |
+
x = torch.roll(shifted_x,
|
389 |
+
shifts=(self.shift_size, self.shift_size),
|
390 |
+
dims=(1, 2))
|
391 |
+
else:
|
392 |
+
x = shifted_x
|
393 |
+
|
394 |
+
if pad_r > 0 or pad_b > 0:
|
395 |
+
x = x[:, :H, :W, :].contiguous()
|
396 |
+
|
397 |
+
x = x.view(B, H * W, C)
|
398 |
+
|
399 |
+
# FFN
|
400 |
+
x = shortcut + self.drop_path(x)
|
401 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
402 |
+
|
403 |
+
return x
|
404 |
+
|
405 |
+
|
406 |
+
class PatchMerging(nn.Module):
|
407 |
+
""" Patch Merging Layer
|
408 |
+
|
409 |
+
Args:
|
410 |
+
dim (int): Number of input channels.
|
411 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
412 |
+
"""
|
413 |
+
|
414 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
415 |
+
super().__init__()
|
416 |
+
self.dim = dim
|
417 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
418 |
+
self.norm = norm_layer(4 * dim)
|
419 |
+
|
420 |
+
def forward(self, x, H, W):
|
421 |
+
""" Forward function.
|
422 |
+
|
423 |
+
Args:
|
424 |
+
x: Input feature, tensor size (B, H*W, C).
|
425 |
+
H, W: Spatial resolution of the input feature.
|
426 |
+
"""
|
427 |
+
B, L, C = x.shape
|
428 |
+
assert L == H * W, "input feature has wrong size"
|
429 |
+
|
430 |
+
x = x.view(B, H, W, C)
|
431 |
+
|
432 |
+
# padding
|
433 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
434 |
+
if pad_input:
|
435 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
436 |
+
|
437 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
438 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
439 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
440 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
441 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
442 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
443 |
+
|
444 |
+
x = self.norm(x)
|
445 |
+
x = self.reduction(x)
|
446 |
+
|
447 |
+
return x
|
448 |
+
|
449 |
+
|
450 |
+
class BasicLayer(nn.Module):
|
451 |
+
""" A basic Swin Transformer layer for one stage.
|
452 |
+
|
453 |
+
Args:
|
454 |
+
dim (int): Number of feature channels
|
455 |
+
depth (int): Depths of this stage.
|
456 |
+
num_heads (int): Number of attention head.
|
457 |
+
window_size (int): Local window size. Default: 7.
|
458 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
459 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
460 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
461 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
462 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
463 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
464 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
465 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
466 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
467 |
+
"""
|
468 |
+
|
469 |
+
def __init__(self,
|
470 |
+
dim,
|
471 |
+
depth,
|
472 |
+
num_heads,
|
473 |
+
window_size=7,
|
474 |
+
mlp_ratio=4.,
|
475 |
+
qkv_bias=True,
|
476 |
+
qk_scale=None,
|
477 |
+
drop=0.,
|
478 |
+
attn_drop=0.,
|
479 |
+
drop_path=0.,
|
480 |
+
norm_layer=nn.LayerNorm,
|
481 |
+
downsample=None,
|
482 |
+
use_checkpoint=False):
|
483 |
+
super().__init__()
|
484 |
+
self.window_size = window_size
|
485 |
+
self.shift_size = window_size // 2
|
486 |
+
self.depth = depth
|
487 |
+
self.use_checkpoint = use_checkpoint
|
488 |
+
|
489 |
+
# build blocks
|
490 |
+
self.blocks = nn.ModuleList([
|
491 |
+
SwinTransformerBlock(dim=dim,
|
492 |
+
num_heads=num_heads,
|
493 |
+
window_size=window_size,
|
494 |
+
shift_size=0 if
|
495 |
+
(i % 2 == 0) else window_size // 2,
|
496 |
+
mlp_ratio=mlp_ratio,
|
497 |
+
qkv_bias=qkv_bias,
|
498 |
+
qk_scale=qk_scale,
|
499 |
+
drop=drop,
|
500 |
+
attn_drop=attn_drop,
|
501 |
+
drop_path=drop_path[i] if isinstance(
|
502 |
+
drop_path, list) else drop_path,
|
503 |
+
norm_layer=norm_layer) for i in range(depth)
|
504 |
+
])
|
505 |
+
|
506 |
+
# patch merging layer
|
507 |
+
if downsample is not None:
|
508 |
+
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
509 |
+
else:
|
510 |
+
self.downsample = None
|
511 |
+
|
512 |
+
def forward(self, x, H, W):
|
513 |
+
""" Forward function.
|
514 |
+
|
515 |
+
Args:
|
516 |
+
x: Input feature, tensor size (B, H*W, C).
|
517 |
+
H, W: Spatial resolution of the input feature.
|
518 |
+
"""
|
519 |
+
|
520 |
+
# calculate attention mask for SW-MSA
|
521 |
+
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
522 |
+
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
523 |
+
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
524 |
+
h_slices = (slice(0, -self.window_size),
|
525 |
+
slice(-self.window_size,
|
526 |
+
-self.shift_size), slice(-self.shift_size, None))
|
527 |
+
w_slices = (slice(0, -self.window_size),
|
528 |
+
slice(-self.window_size,
|
529 |
+
-self.shift_size), slice(-self.shift_size, None))
|
530 |
+
cnt = 0
|
531 |
+
for h in h_slices:
|
532 |
+
for w in w_slices:
|
533 |
+
img_mask[:, h, w, :] = cnt
|
534 |
+
cnt += 1
|
535 |
+
|
536 |
+
mask_windows = window_partition(
|
537 |
+
img_mask, self.window_size) # nW, window_size, window_size, 1
|
538 |
+
mask_windows = mask_windows.view(-1,
|
539 |
+
self.window_size * self.window_size)
|
540 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
541 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0,
|
542 |
+
float(-100.0)).masked_fill(
|
543 |
+
attn_mask == 0, float(0.0))
|
544 |
+
|
545 |
+
for blk in self.blocks:
|
546 |
+
blk.H, blk.W = H, W
|
547 |
+
if self.use_checkpoint:
|
548 |
+
x = checkpoint.checkpoint(blk, x, attn_mask)
|
549 |
+
else:
|
550 |
+
x = blk(x, attn_mask)
|
551 |
+
if self.downsample is not None:
|
552 |
+
x_down = self.downsample(x, H, W)
|
553 |
+
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
554 |
+
return x, H, W, x_down, Wh, Ww
|
555 |
+
else:
|
556 |
+
return x, H, W, x, H, W
|
557 |
+
|
558 |
+
|
559 |
+
class PatchEmbed(nn.Module):
|
560 |
+
""" Image to Patch Embedding
|
561 |
+
|
562 |
+
Args:
|
563 |
+
patch_size (int): Patch token size. Default: 4.
|
564 |
+
in_chans (int): Number of input image channels. Default: 3.
|
565 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
566 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
567 |
+
"""
|
568 |
+
|
569 |
+
def __init__(self,
|
570 |
+
patch_size=4,
|
571 |
+
in_chans=3,
|
572 |
+
embed_dim=96,
|
573 |
+
norm_layer=None):
|
574 |
+
super().__init__()
|
575 |
+
patch_size = to_2tuple(patch_size)
|
576 |
+
self.patch_size = patch_size
|
577 |
+
|
578 |
+
self.in_chans = in_chans
|
579 |
+
self.embed_dim = embed_dim
|
580 |
+
|
581 |
+
self.proj = nn.Conv2d(in_chans,
|
582 |
+
embed_dim,
|
583 |
+
kernel_size=patch_size,
|
584 |
+
stride=patch_size)
|
585 |
+
if norm_layer is not None:
|
586 |
+
self.norm = norm_layer(embed_dim)
|
587 |
+
else:
|
588 |
+
self.norm = None
|
589 |
+
|
590 |
+
def forward(self, x):
|
591 |
+
"""Forward function."""
|
592 |
+
# padding
|
593 |
+
_, _, H, W = x.size()
|
594 |
+
if W % self.patch_size[1] != 0:
|
595 |
+
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
596 |
+
if H % self.patch_size[0] != 0:
|
597 |
+
x = F.pad(x,
|
598 |
+
(0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
599 |
+
|
600 |
+
x = self.proj(x) # B C Wh Ww
|
601 |
+
if self.norm is not None:
|
602 |
+
Wh, Ww = x.size(2), x.size(3)
|
603 |
+
x = x.flatten(2).transpose(1, 2)
|
604 |
+
x = self.norm(x)
|
605 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
606 |
+
|
607 |
+
return x
|
608 |
+
|
609 |
+
|
610 |
+
class SwinTransformer(nn.Module):
|
611 |
+
""" Swin Transformer backbone.
|
612 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
613 |
+
https://arxiv.org/pdf/2103.14030
|
614 |
+
|
615 |
+
Args:
|
616 |
+
pretrain_img_size (int): Input image size for training the pretrained model,
|
617 |
+
used in absolute postion embedding. Default 224.
|
618 |
+
patch_size (int | tuple(int)): Patch size. Default: 4.
|
619 |
+
in_chans (int): Number of input image channels. Default: 3.
|
620 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
621 |
+
depths (tuple[int]): Depths of each Swin Transformer stage.
|
622 |
+
num_heads (tuple[int]): Number of attention head of each stage.
|
623 |
+
window_size (int): Window size. Default: 7.
|
624 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
625 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
626 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
627 |
+
drop_rate (float): Dropout rate.
|
628 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
629 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
630 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
631 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
632 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
633 |
+
out_indices (Sequence[int]): Output from which stages.
|
634 |
+
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
635 |
+
-1 means not freezing any parameters.
|
636 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
637 |
+
"""
|
638 |
+
|
639 |
+
def __init__(self,
|
640 |
+
pretrain_img_size=224,
|
641 |
+
patch_size=4,
|
642 |
+
in_chans=3,
|
643 |
+
embed_dim=96,
|
644 |
+
depths=[2, 2, 6, 2],
|
645 |
+
num_heads=[3, 6, 12, 24],
|
646 |
+
window_size=7,
|
647 |
+
mlp_ratio=4.,
|
648 |
+
qkv_bias=True,
|
649 |
+
qk_scale=None,
|
650 |
+
drop_rate=0.,
|
651 |
+
attn_drop_rate=0.,
|
652 |
+
drop_path_rate=0.2,
|
653 |
+
norm_layer=nn.LayerNorm,
|
654 |
+
ape=False,
|
655 |
+
patch_norm=True,
|
656 |
+
out_indices=(0, 1, 2, 3),
|
657 |
+
frozen_stages=-1,
|
658 |
+
use_checkpoint=False):
|
659 |
+
super().__init__()
|
660 |
+
|
661 |
+
self.pretrain_img_size = pretrain_img_size
|
662 |
+
self.num_layers = len(depths)
|
663 |
+
self.embed_dim = embed_dim
|
664 |
+
self.ape = ape
|
665 |
+
self.patch_norm = patch_norm
|
666 |
+
self.out_indices = out_indices
|
667 |
+
self.frozen_stages = frozen_stages
|
668 |
+
|
669 |
+
# split image into non-overlapping patches
|
670 |
+
self.patch_embed = PatchEmbed(
|
671 |
+
patch_size=patch_size,
|
672 |
+
in_chans=in_chans,
|
673 |
+
embed_dim=embed_dim,
|
674 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
675 |
+
|
676 |
+
# absolute position embedding
|
677 |
+
if self.ape:
|
678 |
+
pretrain_img_size = to_2tuple(pretrain_img_size)
|
679 |
+
patch_size = to_2tuple(patch_size)
|
680 |
+
patches_resolution = [
|
681 |
+
pretrain_img_size[0] // patch_size[0],
|
682 |
+
pretrain_img_size[1] // patch_size[1]
|
683 |
+
]
|
684 |
+
|
685 |
+
self.absolute_pos_embed = nn.Parameter(
|
686 |
+
torch.zeros(1, embed_dim, patches_resolution[0],
|
687 |
+
patches_resolution[1]))
|
688 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
689 |
+
|
690 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
691 |
+
|
692 |
+
# stochastic depth
|
693 |
+
dpr = [
|
694 |
+
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
|
695 |
+
] # stochastic depth decay rule
|
696 |
+
|
697 |
+
# build layers
|
698 |
+
self.layers = nn.ModuleList()
|
699 |
+
for i_layer in range(self.num_layers):
|
700 |
+
layer = BasicLayer(
|
701 |
+
dim=int(embed_dim * 2**i_layer),
|
702 |
+
depth=depths[i_layer],
|
703 |
+
num_heads=num_heads[i_layer],
|
704 |
+
window_size=window_size,
|
705 |
+
mlp_ratio=mlp_ratio,
|
706 |
+
qkv_bias=qkv_bias,
|
707 |
+
qk_scale=qk_scale,
|
708 |
+
drop=drop_rate,
|
709 |
+
attn_drop=attn_drop_rate,
|
710 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
711 |
+
norm_layer=norm_layer,
|
712 |
+
downsample=PatchMerging if
|
713 |
+
(i_layer < self.num_layers - 1) else None,
|
714 |
+
use_checkpoint=use_checkpoint)
|
715 |
+
self.layers.append(layer)
|
716 |
+
|
717 |
+
num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
|
718 |
+
self.num_features = num_features
|
719 |
+
|
720 |
+
# add a norm layer for each output
|
721 |
+
for i_layer in out_indices:
|
722 |
+
layer = norm_layer(num_features[i_layer])
|
723 |
+
layer_name = f'norm{i_layer}'
|
724 |
+
self.add_module(layer_name, layer)
|
725 |
+
|
726 |
+
self._freeze_stages()
|
727 |
+
|
728 |
+
def _freeze_stages(self):
|
729 |
+
if self.frozen_stages >= 0:
|
730 |
+
self.patch_embed.eval()
|
731 |
+
for param in self.patch_embed.parameters():
|
732 |
+
param.requires_grad = False
|
733 |
+
|
734 |
+
if self.frozen_stages >= 1 and self.ape:
|
735 |
+
self.absolute_pos_embed.requires_grad = False
|
736 |
+
|
737 |
+
if self.frozen_stages >= 2:
|
738 |
+
self.pos_drop.eval()
|
739 |
+
for i in range(0, self.frozen_stages - 1):
|
740 |
+
m = self.layers[i]
|
741 |
+
m.eval()
|
742 |
+
for param in m.parameters():
|
743 |
+
param.requires_grad = False
|
744 |
+
|
745 |
+
def init_weights(self, pretrained=None):
|
746 |
+
"""Initialize the weights in backbone.
|
747 |
+
|
748 |
+
Args:
|
749 |
+
pretrained (str, optional): Path to pre-trained weights.
|
750 |
+
Defaults to None.
|
751 |
+
"""
|
752 |
+
|
753 |
+
def _init_weights(m):
|
754 |
+
if isinstance(m, nn.Linear):
|
755 |
+
trunc_normal_(m.weight, std=.02)
|
756 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
757 |
+
nn.init.constant_(m.bias, 0)
|
758 |
+
elif isinstance(m, nn.LayerNorm):
|
759 |
+
nn.init.constant_(m.bias, 0)
|
760 |
+
nn.init.constant_(m.weight, 1.0)
|
761 |
+
|
762 |
+
if isinstance(pretrained, str):
|
763 |
+
self.apply(_init_weights)
|
764 |
+
# logger = get_root_logger()
|
765 |
+
load_checkpoint(self, pretrained, strict=False, logger=None)
|
766 |
+
elif pretrained is None:
|
767 |
+
self.apply(_init_weights)
|
768 |
+
else:
|
769 |
+
raise TypeError('pretrained must be a str or None')
|
770 |
+
|
771 |
+
def forward(self, x):
|
772 |
+
x = self.patch_embed(x)
|
773 |
+
|
774 |
+
Wh, Ww = x.size(2), x.size(3)
|
775 |
+
if self.ape:
|
776 |
+
# interpolate the position embedding to the corresponding size
|
777 |
+
absolute_pos_embed = F.interpolate(self.absolute_pos_embed,
|
778 |
+
size=(Wh, Ww),
|
779 |
+
mode='bicubic')
|
780 |
+
x = (x + absolute_pos_embed) # B Wh*Ww C
|
781 |
+
|
782 |
+
outs = [x.contiguous()]
|
783 |
+
x = x.flatten(2).transpose(1, 2)
|
784 |
+
x = self.pos_drop(x)
|
785 |
+
for i in range(self.num_layers):
|
786 |
+
layer = self.layers[i]
|
787 |
+
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
788 |
+
|
789 |
+
if i in self.out_indices:
|
790 |
+
norm_layer = getattr(self, f'norm{i}')
|
791 |
+
x_out = norm_layer(x_out)
|
792 |
+
|
793 |
+
out = x_out.view(-1, H, W,
|
794 |
+
self.num_features[i]).permute(0, 3, 1,
|
795 |
+
2).contiguous()
|
796 |
+
outs.append(out)
|
797 |
+
|
798 |
+
return tuple(outs)
|
799 |
+
|
800 |
+
def train(self, mode=True):
|
801 |
+
"""Convert the model into training mode while keep layers freezed."""
|
802 |
+
super(SwinTransformer, self).train(mode)
|
803 |
+
self._freeze_stages()
|
804 |
+
#+end_src
|
805 |
+
|
806 |
+
* Main code
|
807 |
+
|
808 |
+
** train.import.py
|
809 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
|
810 |
+
import os
|
811 |
+
|
812 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
|
813 |
+
HOME_DIR = os.environ.get('HOME', '/root')
|
814 |
+
#+end_src
|
815 |
+
|
816 |
+
** train.import.py
|
817 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
|
818 |
+
import sys
|
819 |
+
|
820 |
+
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
821 |
+
#+end_src
|
822 |
+
|
823 |
+
** train.import.py
|
824 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
|
825 |
+
from datetime import datetime
|
826 |
+
import argparse
|
827 |
+
import numpy as np
|
828 |
+
import random
|
829 |
+
import math
|
830 |
+
#+end_src
|
831 |
+
|
832 |
+
** train.import.py
|
833 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
|
834 |
+
import cv2
|
835 |
+
from PIL import Image
|
836 |
+
from PIL import ImageEnhance
|
837 |
+
#+end_src
|
838 |
+
|
839 |
+
** train.import.py
|
840 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
|
841 |
+
from einops import rearrange
|
842 |
+
#+end_src
|
843 |
+
|
844 |
+
** train.import.py
|
845 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
|
846 |
+
import torch
|
847 |
+
import torch.nn as nn
|
848 |
+
import torch.nn.functional as F
|
849 |
+
import torch.utils.data as data
|
850 |
+
|
851 |
+
from torch.autograd import Variable
|
852 |
+
from torch.backends import cudnn
|
853 |
+
from torch.cuda import amp
|
854 |
+
from torch.utils.tensorboard import SummaryWriter
|
855 |
+
|
856 |
+
from torchvision import transforms
|
857 |
+
#+end_src
|
858 |
+
|
859 |
+
** train.import.py
|
860 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
|
861 |
+
from prodigyopt import Prodigy
|
862 |
+
#+end_src
|
863 |
+
|
864 |
+
** train.import.py
|
865 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
|
866 |
+
# from model.MVANet import MVANet
|
867 |
+
from swin import SwinB
|
868 |
+
#+end_src
|
869 |
+
|
870 |
+
** train.function.py
|
871 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.function.py
|
872 |
+
def get_activation_fn(activation):
|
873 |
+
"""Return an activation function given a string"""
|
874 |
+
if activation == "relu":
|
875 |
+
return F.relu
|
876 |
+
if activation == "gelu":
|
877 |
+
return F.gelu
|
878 |
+
if activation == "glu":
|
879 |
+
return F.glu
|
880 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
881 |
+
|
882 |
+
|
883 |
+
def make_cbr(in_dim, out_dim):
|
884 |
+
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1),
|
885 |
+
nn.BatchNorm2d(out_dim), nn.PReLU())
|
886 |
+
|
887 |
+
|
888 |
+
def make_cbg(in_dim, out_dim):
|
889 |
+
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1),
|
890 |
+
nn.BatchNorm2d(out_dim), nn.GELU())
|
891 |
+
|
892 |
+
|
893 |
+
def rescale_to(x, scale_factor: float = 2, interpolation='nearest'):
|
894 |
+
return F.interpolate(x, scale_factor=scale_factor, mode=interpolation)
|
895 |
+
|
896 |
+
|
897 |
+
def resize_as(x, y, interpolation='bilinear'):
|
898 |
+
return F.interpolate(x, size=y.shape[-2:], mode=interpolation)
|
899 |
+
|
900 |
+
|
901 |
+
def image2patches(x):
|
902 |
+
"""b c (hg h) (wg w) -> (hg wg b) c h w"""
|
903 |
+
x = rearrange(x, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2)
|
904 |
+
return x
|
905 |
+
|
906 |
+
|
907 |
+
def patches2image(x):
|
908 |
+
"""(hg wg b) c h w -> b c (hg h) (wg w)"""
|
909 |
+
x = rearrange(x, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2)
|
910 |
+
return x
|
911 |
+
|
912 |
+
|
913 |
+
def structure_loss(pred, mask):
|
914 |
+
weit = 1 + 5 * torch.abs(
|
915 |
+
F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask)
|
916 |
+
wbce = F.binary_cross_entropy_with_logits(pred, mask, reduction='none')
|
917 |
+
wbce = (weit * wbce).sum(dim=(2, 3)) / weit.sum(dim=(2, 3))
|
918 |
+
|
919 |
+
pred = torch.sigmoid(pred)
|
920 |
+
inter = ((pred * mask) * weit).sum(dim=(2, 3))
|
921 |
+
|
922 |
+
union = ((pred + mask) * weit).sum(dim=(2, 3))
|
923 |
+
wiou = 1 - (inter + 1) / (union - inter + 1)
|
924 |
+
|
925 |
+
return (wbce + wiou).mean()
|
926 |
+
|
927 |
+
|
928 |
+
def clip_gradient(optimizer, grad_clip):
|
929 |
+
for group in optimizer.param_groups:
|
930 |
+
for param in group['params']:
|
931 |
+
if param.grad is not None:
|
932 |
+
param.grad.data.clamp_(-grad_clip, grad_clip)
|
933 |
+
|
934 |
+
|
935 |
+
def adjust_lr(optimizer, init_lr, epoch, decay_rate=0.1, decay_epoch=5):
|
936 |
+
decay = decay_rate**(epoch // decay_epoch)
|
937 |
+
for param_group in optimizer.param_groups:
|
938 |
+
param_group['lr'] *= decay
|
939 |
+
|
940 |
+
|
941 |
+
def truncated_normal_(tensor, mean=0, std=1):
|
942 |
+
size = tensor.shape
|
943 |
+
tmp = tensor.new_empty(size + (4, )).normal_()
|
944 |
+
valid = (tmp < 2) & (tmp > -2)
|
945 |
+
ind = valid.max(-1, keepdim=True)[1]
|
946 |
+
tensor.data.copy_(tmp.gather(-1, ind).squeeze(-1))
|
947 |
+
tensor.data.mul_(std).add_(mean)
|
948 |
+
|
949 |
+
|
950 |
+
def init_weights(m):
|
951 |
+
if type(m) == nn.Conv2d or type(m) == nn.ConvTranspose2d:
|
952 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='relu')
|
953 |
+
#nn.init.normal_(m.weight, std=0.001)
|
954 |
+
#nn.init.normal_(m.bias, std=0.001)
|
955 |
+
truncated_normal_(m.bias, mean=0, std=0.001)
|
956 |
+
|
957 |
+
|
958 |
+
def init_weights_orthogonal_normal(m):
|
959 |
+
if type(m) == nn.Conv2d or type(m) == nn.ConvTranspose2d:
|
960 |
+
nn.init.orthogonal_(m.weight)
|
961 |
+
truncated_normal_(m.bias, mean=0, std=0.001)
|
962 |
+
#nn.init.normal_(m.bias, std=0.001)
|
963 |
+
|
964 |
+
|
965 |
+
def l2_regularisation(m):
|
966 |
+
l2_reg = None
|
967 |
+
|
968 |
+
for W in m.parameters():
|
969 |
+
if l2_reg is None:
|
970 |
+
l2_reg = W.norm(2)
|
971 |
+
else:
|
972 |
+
l2_reg = l2_reg + W.norm(2)
|
973 |
+
return l2_reg
|
974 |
+
|
975 |
+
|
976 |
+
def check_mkdir(dir_name):
|
977 |
+
if not os.path.isdir(dir_name):
|
978 |
+
os.makedirs(dir_name)
|
979 |
+
|
980 |
+
|
981 |
+
# several data augumentation strategies
|
982 |
+
def cv_random_flip(img, label):
|
983 |
+
flip_flag = random.randint(0, 1)
|
984 |
+
flip_flag2 = random.randint(0, 1)
|
985 |
+
|
986 |
+
# left right flip
|
987 |
+
if flip_flag == 1:
|
988 |
+
img = img.transpose(Image.FLIP_LEFT_RIGHT)
|
989 |
+
label = label.transpose(Image.FLIP_LEFT_RIGHT)
|
990 |
+
|
991 |
+
# top bottom flip
|
992 |
+
if flip_flag2 == 1:
|
993 |
+
img = img.transpose(Image.FLIP_TOP_BOTTOM)
|
994 |
+
label = label.transpose(Image.FLIP_TOP_BOTTOM)
|
995 |
+
|
996 |
+
return img, label
|
997 |
+
|
998 |
+
|
999 |
+
def random_crop_full(image, X, Y, TX, TY):
|
1000 |
+
image_width = image.size[0]
|
1001 |
+
image_height = image.size[1]
|
1002 |
+
final_width = image_width * TX
|
1003 |
+
final_height = image_height * TY
|
1004 |
+
|
1005 |
+
start_x = (1.0 - TX) * X * image_width
|
1006 |
+
start_y = (1.0 - TY) * Y * image_height
|
1007 |
+
|
1008 |
+
random_region = (start_x, start_y, start_x + final_width,
|
1009 |
+
start_y + final_height)
|
1010 |
+
|
1011 |
+
return image.crop(random_region)
|
1012 |
+
|
1013 |
+
|
1014 |
+
def random_crop(image, X, Y, T):
|
1015 |
+
image_width = image.size[0]
|
1016 |
+
image_height = image.size[1]
|
1017 |
+
final_width = image_width * T
|
1018 |
+
final_height = image_height * T
|
1019 |
+
|
1020 |
+
start_x = (1.0 - T) * X * image_width
|
1021 |
+
start_y = (1.0 - T) * Y * image_height
|
1022 |
+
|
1023 |
+
random_region = (start_x, start_y, start_x + final_width,
|
1024 |
+
start_y + final_height)
|
1025 |
+
|
1026 |
+
return image.crop(random_region)
|
1027 |
+
|
1028 |
+
|
1029 |
+
def garment_color_jitter(image, mask):
|
1030 |
+
image = np.array(image)
|
1031 |
+
mask = np.array(mask)
|
1032 |
+
mask = (mask > 127).astype(dtype=np.uint8)
|
1033 |
+
image = cv2.cvtColor(src=image, code=cv2.COLOR_RGB2HSV_FULL)
|
1034 |
+
image[:, :, 0] += mask * np.random.randint(0, 255)
|
1035 |
+
image = cv2.cvtColor(src=image, code=cv2.COLOR_HSV2RGB_FULL)
|
1036 |
+
image = Image.fromarray(image)
|
1037 |
+
return image
|
1038 |
+
|
1039 |
+
|
1040 |
+
def garment_color_jitter_rotate(image, mask, rotate_index=0, shift_amount=0):
|
1041 |
+
image = np.array(image)
|
1042 |
+
mask = np.array(mask)
|
1043 |
+
|
1044 |
+
if rotate_index == 1:
|
1045 |
+
|
1046 |
+
image = cv2.rotate(src=image, rotateCode=cv2.ROTATE_90_CLOCKWISE)
|
1047 |
+
mask = cv2.rotate(src=mask, rotateCode=cv2.ROTATE_90_CLOCKWISE)
|
1048 |
+
|
1049 |
+
elif rotate_index == 2:
|
1050 |
+
|
1051 |
+
image = cv2.rotate(src=image, rotateCode=cv2.ROTATE_180)
|
1052 |
+
mask = cv2.rotate(src=mask, rotateCode=cv2.ROTATE_180)
|
1053 |
+
|
1054 |
+
elif rotate_index == 3:
|
1055 |
+
|
1056 |
+
image = cv2.rotate(src=image,
|
1057 |
+
rotateCode=cv2.ROTATE_90_COUNTERCLOCKWISE)
|
1058 |
+
|
1059 |
+
mask = cv2.rotate(src=mask, rotateCode=cv2.ROTATE_90_COUNTERCLOCKWISE)
|
1060 |
+
|
1061 |
+
image = cv2.cvtColor(src=image,
|
1062 |
+
code=cv2.COLOR_RGB2HSV_FULL).astype(dtype=np.int32)
|
1063 |
+
# image[:, :, 0] += mask_tmp * shift_amount
|
1064 |
+
image[:, :, 0] += shift_amount
|
1065 |
+
image[:, :, 0] %= 255
|
1066 |
+
image = cv2.cvtColor(src=image.astype(np.uint8),
|
1067 |
+
code=cv2.COLOR_HSV2RGB_FULL)
|
1068 |
+
|
1069 |
+
image = Image.fromarray(image)
|
1070 |
+
mask = Image.fromarray(mask)
|
1071 |
+
|
1072 |
+
return image, mask
|
1073 |
+
|
1074 |
+
|
1075 |
+
def randomCrop_Both(image, label):
|
1076 |
+
|
1077 |
+
image, label = garment_color_jitter_rotate(
|
1078 |
+
image=image,
|
1079 |
+
mask=label,
|
1080 |
+
rotate_index=np.random.randint(0, 4),
|
1081 |
+
shift_amount=np.random.randint(-4, +4),
|
1082 |
+
)
|
1083 |
+
|
1084 |
+
TX = (np.random.rand() * 0.6) + 0.4
|
1085 |
+
TY = (np.random.rand() * 0.6) + 0.4
|
1086 |
+
X = np.random.rand()
|
1087 |
+
Y = np.random.rand()
|
1088 |
+
return random_crop_full(image, X, Y, TX,
|
1089 |
+
TY), random_crop_full(label, X, Y, TX, TY)
|
1090 |
+
|
1091 |
+
|
1092 |
+
def randomCrop_Old(image, label):
|
1093 |
+
|
1094 |
+
# image, label = garment_color_jitter_rotate(
|
1095 |
+
# image=image,
|
1096 |
+
# mask=label,
|
1097 |
+
# rotate_index=np.random.randint(0, 4),
|
1098 |
+
# shift_amount=np.random.randint(0, 256))
|
1099 |
+
|
1100 |
+
# image, label = garment_color_jitter_rotate(
|
1101 |
+
# image=image,
|
1102 |
+
# mask=label,
|
1103 |
+
# rotate_index=np.random.randint(0, 4),
|
1104 |
+
# shift_amount=0,
|
1105 |
+
# )
|
1106 |
+
|
1107 |
+
T = (np.random.rand() * 0.6) + 0.4
|
1108 |
+
X = np.random.rand()
|
1109 |
+
Y = np.random.rand()
|
1110 |
+
return random_crop(image, X, Y, T), random_crop(label, X, Y, T)
|
1111 |
+
|
1112 |
+
|
1113 |
+
def randomCrop(image, label):
|
1114 |
+
return randomCrop_Both(image, label)
|
1115 |
+
|
1116 |
+
|
1117 |
+
def randomCrop_original(image, label):
|
1118 |
+
image_width = image.size[0]
|
1119 |
+
image_height = image.size[1]
|
1120 |
+
border = min(image_width, image_height) // 2
|
1121 |
+
|
1122 |
+
crop_win_width = np.random.randint(image_width - border, image_width)
|
1123 |
+
crop_win_height = np.random.randint(image_height - border, image_height)
|
1124 |
+
|
1125 |
+
random_region = ((image_width - crop_win_width) >> 1,
|
1126 |
+
(image_height - crop_win_height) >> 1,
|
1127 |
+
(image_width + crop_win_width) >> 1,
|
1128 |
+
(image_height + crop_win_height) >> 1)
|
1129 |
+
|
1130 |
+
return image.crop(random_region), label.crop(random_region)
|
1131 |
+
|
1132 |
+
|
1133 |
+
def randomRotation(image, label):
|
1134 |
+
mode = Image.BICUBIC
|
1135 |
+
if random.random() > 0.8:
|
1136 |
+
random_angle = np.random.randint(-15, 15)
|
1137 |
+
image = image.rotate(random_angle, mode)
|
1138 |
+
label = label.rotate(random_angle, mode)
|
1139 |
+
return image, label
|
1140 |
+
|
1141 |
+
|
1142 |
+
def colorEnhance(image):
|
1143 |
+
bright_intensity = random.randint(5, 15) / 10.0
|
1144 |
+
image = ImageEnhance.Brightness(image).enhance(bright_intensity)
|
1145 |
+
contrast_intensity = random.randint(5, 15) / 10.0
|
1146 |
+
image = ImageEnhance.Contrast(image).enhance(contrast_intensity)
|
1147 |
+
color_intensity = random.randint(0, 20) / 10.0
|
1148 |
+
image = ImageEnhance.Color(image).enhance(color_intensity)
|
1149 |
+
sharp_intensity = random.randint(0, 30) / 10.0
|
1150 |
+
image = ImageEnhance.Sharpness(image).enhance(sharp_intensity)
|
1151 |
+
return image
|
1152 |
+
|
1153 |
+
|
1154 |
+
def randomGaussian(image, mean=0.1, sigma=0.35):
|
1155 |
+
|
1156 |
+
def gaussianNoisy(im, mean=mean, sigma=sigma):
|
1157 |
+
for _i in range(len(im)):
|
1158 |
+
im[_i] += random.gauss(mean, sigma)
|
1159 |
+
return im
|
1160 |
+
|
1161 |
+
img = np.asarray(image)
|
1162 |
+
width, height = img.shape
|
1163 |
+
img = gaussianNoisy(img[:].flatten(), mean, sigma)
|
1164 |
+
img = img.reshape([width, height])
|
1165 |
+
return Image.fromarray(np.uint8(img))
|
1166 |
+
|
1167 |
+
|
1168 |
+
def randomPeper(img):
|
1169 |
+
img = np.array(img)
|
1170 |
+
noiseNum = int(0.0015 * img.shape[0] * img.shape[1])
|
1171 |
+
for i in range(noiseNum):
|
1172 |
+
|
1173 |
+
randX = random.randint(0, img.shape[0] - 1)
|
1174 |
+
|
1175 |
+
randY = random.randint(0, img.shape[1] - 1)
|
1176 |
+
|
1177 |
+
if random.randint(0, 1) == 0:
|
1178 |
+
|
1179 |
+
img[randX, randY] = 0
|
1180 |
+
|
1181 |
+
else:
|
1182 |
+
|
1183 |
+
img[randX, randY] = 255
|
1184 |
+
return Image.fromarray(img)
|
1185 |
+
|
1186 |
+
|
1187 |
+
# dataloader for training
|
1188 |
+
def get_loader(image_root,
|
1189 |
+
gt_root,
|
1190 |
+
batchsize,
|
1191 |
+
trainsize,
|
1192 |
+
shuffle=True,
|
1193 |
+
num_workers=12,
|
1194 |
+
pin_memory=False):
|
1195 |
+
print('DEBUG 6')
|
1196 |
+
dataset = DISDataset(image_root, gt_root, trainsize)
|
1197 |
+
print('DEBUG 7')
|
1198 |
+
data_loader = data.DataLoader(dataset=dataset,
|
1199 |
+
batch_size=batchsize,
|
1200 |
+
shuffle=shuffle,
|
1201 |
+
num_workers=num_workers,
|
1202 |
+
pin_memory=pin_memory)
|
1203 |
+
print('DEBUG 8')
|
1204 |
+
return data_loader
|
1205 |
+
#+end_src
|
1206 |
+
|
1207 |
+
** train.class.py
|
1208 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.class.py
|
1209 |
+
class AvgMeter(object):
|
1210 |
+
|
1211 |
+
def __init__(self, num=40):
|
1212 |
+
self.num = num
|
1213 |
+
self.reset()
|
1214 |
+
|
1215 |
+
def reset(self):
|
1216 |
+
self.val = 0
|
1217 |
+
self.avg = 0
|
1218 |
+
self.sum = 0
|
1219 |
+
self.count = 0
|
1220 |
+
self.losses = []
|
1221 |
+
|
1222 |
+
def update(self, val, n=1):
|
1223 |
+
self.val = val
|
1224 |
+
self.sum += val * n
|
1225 |
+
self.count += n
|
1226 |
+
self.avg = self.sum / self.count
|
1227 |
+
self.losses.append(val)
|
1228 |
+
|
1229 |
+
def show(self):
|
1230 |
+
a = len(self.losses)
|
1231 |
+
b = np.maximum(a - self.num, 0)
|
1232 |
+
c = self.losses[b:]
|
1233 |
+
#print(c)
|
1234 |
+
#d = torch.mean(torch.stack(c))
|
1235 |
+
#print(d)
|
1236 |
+
return torch.mean(torch.stack(c))
|
1237 |
+
|
1238 |
+
|
1239 |
+
class Running_Avg(object):
|
1240 |
+
|
1241 |
+
def __init__(self, weight=0.999):
|
1242 |
+
self.weight = weight
|
1243 |
+
self.reset()
|
1244 |
+
|
1245 |
+
def reset(self):
|
1246 |
+
self.n = 0
|
1247 |
+
self.val = 0
|
1248 |
+
|
1249 |
+
def update(self, val, n=1):
|
1250 |
+
self.val = (self.weight * self.val) + ((1 - self.weight) * val)
|
1251 |
+
self.n = (self.weight * self.n) + ((1 - self.weight) * n)
|
1252 |
+
|
1253 |
+
def show(self):
|
1254 |
+
if self.n == 0:
|
1255 |
+
return 0
|
1256 |
+
else:
|
1257 |
+
return self.val / self.n
|
1258 |
+
#+end_src
|
1259 |
+
|
1260 |
+
** Main training dataset
|
1261 |
+
|
1262 |
+
*** COMMENT Original
|
1263 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.class.py
|
1264 |
+
# dataset for training
|
1265 |
+
# The current loader is not using the normalized depth maps for training and test. If you use the normalized depth maps
|
1266 |
+
# (e.g., 0 represents background and 1 represents foreground.), the performance will be further improved.
|
1267 |
+
class DISDataset(data.Dataset):
|
1268 |
+
|
1269 |
+
def __init__(self, image_root, gt_root, trainsize):
|
1270 |
+
self.trainsize = trainsize
|
1271 |
+
self.images = [
|
1272 |
+
image_root + f for f in os.listdir(image_root)
|
1273 |
+
if f.endswith('.jpg') or f.endswith('.png') or f.endswith('tif')
|
1274 |
+
]
|
1275 |
+
self.gts = [
|
1276 |
+
gt_root + f for f in os.listdir(gt_root)
|
1277 |
+
if f.endswith('.jpg') or f.endswith('.png') or f.endswith('tif')
|
1278 |
+
]
|
1279 |
+
self.images = sorted(self.images)
|
1280 |
+
self.gts = sorted(self.gts)
|
1281 |
+
self.filter_files()
|
1282 |
+
self.size = len(self.images)
|
1283 |
+
self.img_transform = transforms.Compose([
|
1284 |
+
transforms.Resize((self.trainsize, self.trainsize)),
|
1285 |
+
transforms.ToTensor(),
|
1286 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
1287 |
+
])
|
1288 |
+
self.gt_transform = transforms.Compose([
|
1289 |
+
transforms.Resize((self.trainsize, self.trainsize)),
|
1290 |
+
transforms.ToTensor()
|
1291 |
+
])
|
1292 |
+
|
1293 |
+
def __getitem__(self, index):
|
1294 |
+
image = self.rgb_loader(self.images[index])
|
1295 |
+
gt = self.binary_loader(self.gts[index])
|
1296 |
+
image, gt = cv_random_flip(image, gt)
|
1297 |
+
image, gt = randomCrop(image, gt)
|
1298 |
+
image, gt = randomRotation(image, gt)
|
1299 |
+
image = colorEnhance(image)
|
1300 |
+
image = self.img_transform(image)
|
1301 |
+
gt = self.gt_transform(gt)
|
1302 |
+
|
1303 |
+
return image, gt
|
1304 |
+
|
1305 |
+
def filter_files(self):
|
1306 |
+
assert len(self.images) == len(self.gts) and len(self.gts) == len(
|
1307 |
+
self.images)
|
1308 |
+
images = []
|
1309 |
+
gts = []
|
1310 |
+
for img_path, gt_path in zip(self.images, self.gts):
|
1311 |
+
img = Image.open(img_path)
|
1312 |
+
gt = Image.open(gt_path)
|
1313 |
+
if img.size == gt.size:
|
1314 |
+
images.append(img_path)
|
1315 |
+
gts.append(gt_path)
|
1316 |
+
self.images = images
|
1317 |
+
self.gts = gts
|
1318 |
+
|
1319 |
+
def rgb_loader(self, path):
|
1320 |
+
with open(path, 'rb') as f:
|
1321 |
+
img = Image.open(f)
|
1322 |
+
return img.convert('RGB')
|
1323 |
+
|
1324 |
+
def binary_loader(self, path):
|
1325 |
+
with open(path, 'rb') as f:
|
1326 |
+
img = Image.open(f)
|
1327 |
+
return img.convert('L')
|
1328 |
+
|
1329 |
+
def resize(self, img, gt):
|
1330 |
+
assert img.size == gt.size
|
1331 |
+
w, h = img.size
|
1332 |
+
if h < self.trainsize or w < self.trainsize:
|
1333 |
+
h = max(h, self.trainsize)
|
1334 |
+
w = max(w, self.trainsize)
|
1335 |
+
return img.resize((w, h), Image.BILINEAR), gt.resize((w, h),
|
1336 |
+
Image.NEAREST)
|
1337 |
+
else:
|
1338 |
+
return img, gt
|
1339 |
+
|
1340 |
+
def __len__(self):
|
1341 |
+
return self.size
|
1342 |
+
#+end_src
|
1343 |
+
|
1344 |
+
*** Changed
|
1345 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.class.py
|
1346 |
+
# dataset for training
|
1347 |
+
# The current loader is not using the normalized depth maps for training and test. If you use the normalized depth maps
|
1348 |
+
# (e.g., 0 represents background and 1 represents foreground.), the performance will be further improved.
|
1349 |
+
class DISDataset(data.Dataset):
|
1350 |
+
|
1351 |
+
def __init__(self, image_root, gt_root, trainsize):
|
1352 |
+
self.trainsize = trainsize
|
1353 |
+
end_pattern = '_segm.png'
|
1354 |
+
files = list(f for f in os.listdir(gt_root) if f.endswith(end_pattern))
|
1355 |
+
files.sort()
|
1356 |
+
|
1357 |
+
self.gts = list(gt_root + f for f in files)
|
1358 |
+
|
1359 |
+
self.images = list(image_root + f[0:-len(end_pattern)] + '.jpg'
|
1360 |
+
for f in files)
|
1361 |
+
|
1362 |
+
self.size = len(self.images)
|
1363 |
+
|
1364 |
+
self.img_transform = transforms.Compose([
|
1365 |
+
transforms.Resize((self.trainsize, self.trainsize)),
|
1366 |
+
transforms.ToTensor(),
|
1367 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
1368 |
+
])
|
1369 |
+
|
1370 |
+
self.gt_transform = transforms.Compose([
|
1371 |
+
transforms.Resize((self.trainsize, self.trainsize)),
|
1372 |
+
transforms.ToTensor()
|
1373 |
+
])
|
1374 |
+
|
1375 |
+
def __getitem__(self, index):
|
1376 |
+
image = self.rgb_loader(self.images[index])
|
1377 |
+
gt = self.binary_loader(self.gts[index])
|
1378 |
+
image, gt = cv_random_flip(image, gt)
|
1379 |
+
image, gt = randomCrop(image, gt)
|
1380 |
+
image, gt = randomRotation(image, gt)
|
1381 |
+
image = colorEnhance(image)
|
1382 |
+
image = self.img_transform(image)
|
1383 |
+
gt = self.gt_transform(gt)
|
1384 |
+
|
1385 |
+
return image, gt
|
1386 |
+
|
1387 |
+
def filter_files(self):
|
1388 |
+
assert len(self.images) == len(self.gts) and len(self.gts) == len(
|
1389 |
+
self.images)
|
1390 |
+
images = []
|
1391 |
+
gts = []
|
1392 |
+
for img_path, gt_path in zip(self.images, self.gts):
|
1393 |
+
img = Image.open(img_path)
|
1394 |
+
gt = Image.open(gt_path)
|
1395 |
+
if img.size == gt.size:
|
1396 |
+
images.append(img_path)
|
1397 |
+
gts.append(gt_path)
|
1398 |
+
self.images = images
|
1399 |
+
self.gts = gts
|
1400 |
+
|
1401 |
+
def rgb_loader(self, path):
|
1402 |
+
with open(path, 'rb') as f:
|
1403 |
+
img = Image.open(f)
|
1404 |
+
return img.convert('RGB')
|
1405 |
+
|
1406 |
+
def binary_loader(self, path):
|
1407 |
+
with open(path, 'rb') as f:
|
1408 |
+
img = Image.open(f)
|
1409 |
+
return img.convert('L')
|
1410 |
+
|
1411 |
+
def resize(self, img, gt):
|
1412 |
+
assert img.size == gt.size
|
1413 |
+
w, h = img.size
|
1414 |
+
if h < self.trainsize or w < self.trainsize:
|
1415 |
+
h = max(h, self.trainsize)
|
1416 |
+
w = max(w, self.trainsize)
|
1417 |
+
return img.resize((w, h), Image.BILINEAR), gt.resize((w, h),
|
1418 |
+
Image.NEAREST)
|
1419 |
+
else:
|
1420 |
+
return img, gt
|
1421 |
+
|
1422 |
+
def __len__(self):
|
1423 |
+
return self.size
|
1424 |
+
#+end_src
|
1425 |
+
|
1426 |
+
** train.class.py
|
1427 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.class.py
|
1428 |
+
# test dataset and loader
|
1429 |
+
class test_dataset:
|
1430 |
+
|
1431 |
+
def __init__(self, image_root, depth_root, testsize):
|
1432 |
+
self.testsize = testsize
|
1433 |
+
self.images = [
|
1434 |
+
image_root + f for f in os.listdir(image_root)
|
1435 |
+
if f.endswith('.jpg')
|
1436 |
+
]
|
1437 |
+
self.depths = [
|
1438 |
+
depth_root + f for f in os.listdir(depth_root)
|
1439 |
+
if f.endswith('.bmp') or f.endswith('.png')
|
1440 |
+
]
|
1441 |
+
self.images = sorted(self.images)
|
1442 |
+
self.depths = sorted(self.depths)
|
1443 |
+
self.transform = transforms.Compose([
|
1444 |
+
transforms.Resize((self.testsize, self.testsize)),
|
1445 |
+
transforms.ToTensor(),
|
1446 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
1447 |
+
])
|
1448 |
+
# self.gt_transform = transforms.Compose([
|
1449 |
+
# transforms.Resize((self.trainsize, self.trainsize)),
|
1450 |
+
# transforms.ToTensor()])
|
1451 |
+
self.depths_transform = transforms.Compose([
|
1452 |
+
transforms.Resize((self.testsize, self.testsize)),
|
1453 |
+
transforms.ToTensor()
|
1454 |
+
])
|
1455 |
+
self.size = len(self.images)
|
1456 |
+
self.index = 0
|
1457 |
+
|
1458 |
+
def load_data(self):
|
1459 |
+
image = self.rgb_loader(self.images[self.index])
|
1460 |
+
HH = image.size[0]
|
1461 |
+
WW = image.size[1]
|
1462 |
+
image = self.transform(image).unsqueeze(0)
|
1463 |
+
depth = self.rgb_loader(self.depths[self.index])
|
1464 |
+
depth = self.depths_transform(depth).unsqueeze(0)
|
1465 |
+
|
1466 |
+
name = self.images[self.index].split('/')[-1]
|
1467 |
+
# image_for_post=self.rgb_loader(self.images[self.index])
|
1468 |
+
# image_for_post=image_for_post.resize(gt.size)
|
1469 |
+
if name.endswith('.jpg'):
|
1470 |
+
name = name.split('.jpg')[0] + '.png'
|
1471 |
+
self.index += 1
|
1472 |
+
self.index = self.index % self.size
|
1473 |
+
return image, depth, HH, WW, name
|
1474 |
+
|
1475 |
+
def rgb_loader(self, path):
|
1476 |
+
with open(path, 'rb') as f:
|
1477 |
+
img = Image.open(f)
|
1478 |
+
return img.convert('RGB')
|
1479 |
+
|
1480 |
+
def binary_loader(self, path):
|
1481 |
+
with open(path, 'rb') as f:
|
1482 |
+
img = Image.open(f)
|
1483 |
+
return img.convert('L')
|
1484 |
+
|
1485 |
+
def __len__(self):
|
1486 |
+
return self.size
|
1487 |
+
|
1488 |
+
|
1489 |
+
class PositionEmbeddingSine:
|
1490 |
+
|
1491 |
+
def __init__(self,
|
1492 |
+
num_pos_feats=64,
|
1493 |
+
temperature=10000,
|
1494 |
+
normalize=False,
|
1495 |
+
scale=None):
|
1496 |
+
|
1497 |
+
super().__init__()
|
1498 |
+
|
1499 |
+
self.num_pos_feats = num_pos_feats
|
1500 |
+
self.temperature = temperature
|
1501 |
+
self.normalize = normalize
|
1502 |
+
if scale is not None and normalize is False:
|
1503 |
+
raise ValueError("normalize should be True if scale is passed")
|
1504 |
+
if scale is None:
|
1505 |
+
scale = 2 * math.pi
|
1506 |
+
self.scale = scale
|
1507 |
+
self.dim_t = torch.arange(0,
|
1508 |
+
self.num_pos_feats,
|
1509 |
+
dtype=torch.float32,
|
1510 |
+
device='cuda')
|
1511 |
+
|
1512 |
+
def __call__(self, b, h, w):
|
1513 |
+
mask = torch.zeros([b, h, w], dtype=torch.bool, device='cuda')
|
1514 |
+
assert mask is not None
|
1515 |
+
not_mask = ~mask
|
1516 |
+
y_embed = not_mask.cumsum(dim=1, dtype=torch.float32)
|
1517 |
+
x_embed = not_mask.cumsum(dim=2, dtype=torch.float32)
|
1518 |
+
if self.normalize:
|
1519 |
+
eps = 1e-6
|
1520 |
+
y_embed = ((y_embed - 0.5) / (y_embed[:, -1:, :] + eps) *
|
1521 |
+
self.scale).cuda()
|
1522 |
+
x_embed = ((x_embed - 0.5) / (x_embed[:, :, -1:] + eps) *
|
1523 |
+
self.scale).cuda()
|
1524 |
+
|
1525 |
+
dim_t = self.temperature**(2 * (self.dim_t // 2) / self.num_pos_feats)
|
1526 |
+
|
1527 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
1528 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
1529 |
+
pos_x = torch.stack(
|
1530 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()),
|
1531 |
+
dim=4).flatten(3)
|
1532 |
+
pos_y = torch.stack(
|
1533 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()),
|
1534 |
+
dim=4).flatten(3)
|
1535 |
+
return torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
1536 |
+
|
1537 |
+
|
1538 |
+
class MCLM(nn.Module):
|
1539 |
+
|
1540 |
+
def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]):
|
1541 |
+
super(MCLM, self).__init__()
|
1542 |
+
self.attention = nn.ModuleList([
|
1543 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1544 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1545 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1546 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1547 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
|
1548 |
+
])
|
1549 |
+
|
1550 |
+
self.linear1 = nn.Linear(d_model, d_model * 2)
|
1551 |
+
self.linear2 = nn.Linear(d_model * 2, d_model)
|
1552 |
+
self.linear3 = nn.Linear(d_model, d_model * 2)
|
1553 |
+
self.linear4 = nn.Linear(d_model * 2, d_model)
|
1554 |
+
self.norm1 = nn.LayerNorm(d_model)
|
1555 |
+
self.norm2 = nn.LayerNorm(d_model)
|
1556 |
+
self.dropout = nn.Dropout(0.1)
|
1557 |
+
self.dropout1 = nn.Dropout(0.1)
|
1558 |
+
self.dropout2 = nn.Dropout(0.1)
|
1559 |
+
self.activation = get_activation_fn('relu')
|
1560 |
+
self.pool_ratios = pool_ratios
|
1561 |
+
self.p_poses = []
|
1562 |
+
self.g_pos = None
|
1563 |
+
self.positional_encoding = PositionEmbeddingSine(
|
1564 |
+
num_pos_feats=d_model // 2, normalize=True)
|
1565 |
+
|
1566 |
+
def forward(self, l, g):
|
1567 |
+
"""
|
1568 |
+
l: 4,c,h,w
|
1569 |
+
g: 1,c,h,w
|
1570 |
+
"""
|
1571 |
+
b, c, h, w = l.size()
|
1572 |
+
# 4,c,h,w -> 1,c,2h,2w
|
1573 |
+
concated_locs = rearrange(l,
|
1574 |
+
'(hg wg b) c h w -> b c (hg h) (wg w)',
|
1575 |
+
hg=2,
|
1576 |
+
wg=2)
|
1577 |
+
|
1578 |
+
pools = []
|
1579 |
+
for pool_ratio in self.pool_ratios:
|
1580 |
+
# b,c,h,w
|
1581 |
+
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
|
1582 |
+
pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw)
|
1583 |
+
pools.append(rearrange(pool, 'b c h w -> (h w) b c'))
|
1584 |
+
if self.g_pos is None:
|
1585 |
+
pos_emb = self.positional_encoding(pool.shape[0],
|
1586 |
+
pool.shape[2],
|
1587 |
+
pool.shape[3])
|
1588 |
+
pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c')
|
1589 |
+
self.p_poses.append(pos_emb)
|
1590 |
+
pools = torch.cat(pools, 0)
|
1591 |
+
if self.g_pos is None:
|
1592 |
+
self.p_poses = torch.cat(self.p_poses, dim=0)
|
1593 |
+
pos_emb = self.positional_encoding(g.shape[0], g.shape[2],
|
1594 |
+
g.shape[3])
|
1595 |
+
self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c')
|
1596 |
+
|
1597 |
+
# attention between glb (q) & multisensory concated-locs (k,v)
|
1598 |
+
g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c')
|
1599 |
+
g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0](
|
1600 |
+
g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0])
|
1601 |
+
g_hw_b_c = self.norm1(g_hw_b_c)
|
1602 |
+
g_hw_b_c = g_hw_b_c + self.dropout2(
|
1603 |
+
self.linear2(
|
1604 |
+
self.dropout(self.activation(self.linear1(g_hw_b_c)).clone())))
|
1605 |
+
g_hw_b_c = self.norm2(g_hw_b_c)
|
1606 |
+
|
1607 |
+
# attention between origin locs (q) & freashed glb (k,v)
|
1608 |
+
l_hw_b_c = rearrange(l, "b c h w -> (h w) b c")
|
1609 |
+
_g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w)
|
1610 |
+
_g_hw_b_c = rearrange(_g_hw_b_c,
|
1611 |
+
"(ng h) (nw w) b c -> (h w) (ng nw b) c",
|
1612 |
+
ng=2,
|
1613 |
+
nw=2)
|
1614 |
+
outputs_re = []
|
1615 |
+
for i, (_l, _g) in enumerate(
|
1616 |
+
zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))):
|
1617 |
+
outputs_re.append(self.attention[i + 1](_l, _g,
|
1618 |
+
_g)[0]) # (h w) 1 c
|
1619 |
+
outputs_re = torch.cat(outputs_re, 1) # (h w) 4 c
|
1620 |
+
|
1621 |
+
l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re)
|
1622 |
+
l_hw_b_c = self.norm1(l_hw_b_c)
|
1623 |
+
l_hw_b_c = l_hw_b_c + self.dropout2(
|
1624 |
+
self.linear4(
|
1625 |
+
self.dropout(self.activation(self.linear3(l_hw_b_c)).clone())))
|
1626 |
+
l_hw_b_c = self.norm2(l_hw_b_c)
|
1627 |
+
|
1628 |
+
l = torch.cat((l_hw_b_c, g_hw_b_c), 1) # hw,b(5),c
|
1629 |
+
return rearrange(l, "(h w) b c -> b c h w", h=h, w=w) ## (5,c,h*w)
|
1630 |
+
|
1631 |
+
|
1632 |
+
class inf_MCLM(nn.Module):
|
1633 |
+
|
1634 |
+
def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]):
|
1635 |
+
super(inf_MCLM, self).__init__()
|
1636 |
+
self.attention = nn.ModuleList([
|
1637 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1638 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1639 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1640 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1641 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
|
1642 |
+
])
|
1643 |
+
|
1644 |
+
self.linear1 = nn.Linear(d_model, d_model * 2)
|
1645 |
+
self.linear2 = nn.Linear(d_model * 2, d_model)
|
1646 |
+
self.linear3 = nn.Linear(d_model, d_model * 2)
|
1647 |
+
self.linear4 = nn.Linear(d_model * 2, d_model)
|
1648 |
+
self.norm1 = nn.LayerNorm(d_model)
|
1649 |
+
self.norm2 = nn.LayerNorm(d_model)
|
1650 |
+
self.dropout = nn.Dropout(0.1)
|
1651 |
+
self.dropout1 = nn.Dropout(0.1)
|
1652 |
+
self.dropout2 = nn.Dropout(0.1)
|
1653 |
+
self.activation = get_activation_fn('relu')
|
1654 |
+
self.pool_ratios = pool_ratios
|
1655 |
+
self.p_poses = []
|
1656 |
+
self.g_pos = None
|
1657 |
+
self.positional_encoding = PositionEmbeddingSine(
|
1658 |
+
num_pos_feats=d_model // 2, normalize=True)
|
1659 |
+
|
1660 |
+
def forward(self, l, g):
|
1661 |
+
"""
|
1662 |
+
l: 4,c,h,w
|
1663 |
+
g: 1,c,h,w
|
1664 |
+
"""
|
1665 |
+
b, c, h, w = l.size()
|
1666 |
+
# 4,c,h,w -> 1,c,2h,2w
|
1667 |
+
concated_locs = rearrange(l,
|
1668 |
+
'(hg wg b) c h w -> b c (hg h) (wg w)',
|
1669 |
+
hg=2,
|
1670 |
+
wg=2)
|
1671 |
+
self.p_poses = []
|
1672 |
+
pools = []
|
1673 |
+
for pool_ratio in self.pool_ratios:
|
1674 |
+
# b,c,h,w
|
1675 |
+
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
|
1676 |
+
pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw)
|
1677 |
+
pools.append(rearrange(pool, 'b c h w -> (h w) b c'))
|
1678 |
+
# if self.g_pos is None:
|
1679 |
+
pos_emb = self.positional_encoding(pool.shape[0], pool.shape[2],
|
1680 |
+
pool.shape[3])
|
1681 |
+
pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c')
|
1682 |
+
self.p_poses.append(pos_emb)
|
1683 |
+
pools = torch.cat(pools, 0)
|
1684 |
+
# if self.g_pos is None:
|
1685 |
+
self.p_poses = torch.cat(self.p_poses, dim=0)
|
1686 |
+
pos_emb = self.positional_encoding(g.shape[0], g.shape[2], g.shape[3])
|
1687 |
+
self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c')
|
1688 |
+
|
1689 |
+
# attention between glb (q) & multisensory concated-locs (k,v)
|
1690 |
+
g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c')
|
1691 |
+
g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0](
|
1692 |
+
g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0])
|
1693 |
+
g_hw_b_c = self.norm1(g_hw_b_c)
|
1694 |
+
g_hw_b_c = g_hw_b_c + self.dropout2(
|
1695 |
+
self.linear2(
|
1696 |
+
self.dropout(self.activation(self.linear1(g_hw_b_c)).clone())))
|
1697 |
+
g_hw_b_c = self.norm2(g_hw_b_c)
|
1698 |
+
|
1699 |
+
# attention between origin locs (q) & freashed glb (k,v)
|
1700 |
+
l_hw_b_c = rearrange(l, "b c h w -> (h w) b c")
|
1701 |
+
_g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w)
|
1702 |
+
_g_hw_b_c = rearrange(_g_hw_b_c,
|
1703 |
+
"(ng h) (nw w) b c -> (h w) (ng nw b) c",
|
1704 |
+
ng=2,
|
1705 |
+
nw=2)
|
1706 |
+
outputs_re = []
|
1707 |
+
for i, (_l, _g) in enumerate(
|
1708 |
+
zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))):
|
1709 |
+
outputs_re.append(self.attention[i + 1](_l, _g,
|
1710 |
+
_g)[0]) # (h w) 1 c
|
1711 |
+
outputs_re = torch.cat(outputs_re, 1) # (h w) 4 c
|
1712 |
+
|
1713 |
+
l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re)
|
1714 |
+
l_hw_b_c = self.norm1(l_hw_b_c)
|
1715 |
+
l_hw_b_c = l_hw_b_c + self.dropout2(
|
1716 |
+
self.linear4(
|
1717 |
+
self.dropout(self.activation(self.linear3(l_hw_b_c)).clone())))
|
1718 |
+
l_hw_b_c = self.norm2(l_hw_b_c)
|
1719 |
+
|
1720 |
+
l = torch.cat((l_hw_b_c, g_hw_b_c), 1) # hw,b(5),c
|
1721 |
+
return rearrange(l, "(h w) b c -> b c h w", h=h, w=w) ## (5,c,h*w)
|
1722 |
+
|
1723 |
+
|
1724 |
+
class MCRM(nn.Module):
|
1725 |
+
|
1726 |
+
def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None):
|
1727 |
+
super(MCRM, self).__init__()
|
1728 |
+
self.attention = nn.ModuleList([
|
1729 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1730 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1731 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1732 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
|
1733 |
+
])
|
1734 |
+
|
1735 |
+
self.linear3 = nn.Linear(d_model, d_model * 2)
|
1736 |
+
self.linear4 = nn.Linear(d_model * 2, d_model)
|
1737 |
+
self.norm1 = nn.LayerNorm(d_model)
|
1738 |
+
self.norm2 = nn.LayerNorm(d_model)
|
1739 |
+
self.dropout = nn.Dropout(0.1)
|
1740 |
+
self.dropout1 = nn.Dropout(0.1)
|
1741 |
+
self.dropout2 = nn.Dropout(0.1)
|
1742 |
+
self.sigmoid = nn.Sigmoid()
|
1743 |
+
self.activation = get_activation_fn('relu')
|
1744 |
+
self.sal_conv = nn.Conv2d(d_model, 1, 1)
|
1745 |
+
self.pool_ratios = pool_ratios
|
1746 |
+
self.positional_encoding = PositionEmbeddingSine(
|
1747 |
+
num_pos_feats=d_model // 2, normalize=True)
|
1748 |
+
|
1749 |
+
def forward(self, x):
|
1750 |
+
b, c, h, w = x.size()
|
1751 |
+
loc, glb = x.split([4, 1], dim=0) # 4,c,h,w; 1,c,h,w
|
1752 |
+
# b(4),c,h,w
|
1753 |
+
patched_glb = rearrange(glb,
|
1754 |
+
'b c (hg h) (wg w) -> (hg wg b) c h w',
|
1755 |
+
hg=2,
|
1756 |
+
wg=2)
|
1757 |
+
|
1758 |
+
# generate token attention map
|
1759 |
+
token_attention_map = self.sigmoid(self.sal_conv(glb))
|
1760 |
+
token_attention_map = F.interpolate(token_attention_map,
|
1761 |
+
size=patches2image(loc).shape[-2:],
|
1762 |
+
mode='nearest')
|
1763 |
+
loc = loc * rearrange(token_attention_map,
|
1764 |
+
'b c (hg h) (wg w) -> (hg wg b) c h w',
|
1765 |
+
hg=2,
|
1766 |
+
wg=2)
|
1767 |
+
pools = []
|
1768 |
+
for pool_ratio in self.pool_ratios:
|
1769 |
+
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
|
1770 |
+
pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw)
|
1771 |
+
pools.append(rearrange(pool,
|
1772 |
+
'nl c h w -> nl c (h w)')) # nl(4),c,hw
|
1773 |
+
# nl(4),c,nphw -> nl(4),nphw,1,c
|
1774 |
+
pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c")
|
1775 |
+
loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c')
|
1776 |
+
outputs = []
|
1777 |
+
for i, q in enumerate(
|
1778 |
+
loc_.unbind(dim=0)): # traverse all local patches
|
1779 |
+
# np*hw,1,c
|
1780 |
+
v = pools[i]
|
1781 |
+
k = v
|
1782 |
+
outputs.append(self.attention[i](q, k, v)[0])
|
1783 |
+
outputs = torch.cat(outputs, 1)
|
1784 |
+
src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs)
|
1785 |
+
src = self.norm1(src)
|
1786 |
+
src = src + self.dropout2(
|
1787 |
+
self.linear4(
|
1788 |
+
self.dropout(self.activation(self.linear3(src)).clone())))
|
1789 |
+
src = self.norm2(src)
|
1790 |
+
|
1791 |
+
src = src.permute(1, 2, 0).reshape(4, c, h, w) # freshed loc
|
1792 |
+
glb = glb + F.interpolate(patches2image(src),
|
1793 |
+
size=glb.shape[-2:],
|
1794 |
+
mode='nearest') # freshed glb
|
1795 |
+
return torch.cat((src, glb), 0), token_attention_map
|
1796 |
+
|
1797 |
+
|
1798 |
+
class inf_MCRM(nn.Module):
|
1799 |
+
|
1800 |
+
def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None):
|
1801 |
+
super(inf_MCRM, self).__init__()
|
1802 |
+
self.attention = nn.ModuleList([
|
1803 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1804 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1805 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1806 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
|
1807 |
+
])
|
1808 |
+
|
1809 |
+
self.linear3 = nn.Linear(d_model, d_model * 2)
|
1810 |
+
self.linear4 = nn.Linear(d_model * 2, d_model)
|
1811 |
+
self.norm1 = nn.LayerNorm(d_model)
|
1812 |
+
self.norm2 = nn.LayerNorm(d_model)
|
1813 |
+
self.dropout = nn.Dropout(0.1)
|
1814 |
+
self.dropout1 = nn.Dropout(0.1)
|
1815 |
+
self.dropout2 = nn.Dropout(0.1)
|
1816 |
+
self.sigmoid = nn.Sigmoid()
|
1817 |
+
self.activation = get_activation_fn('relu')
|
1818 |
+
self.sal_conv = nn.Conv2d(d_model, 1, 1)
|
1819 |
+
self.pool_ratios = pool_ratios
|
1820 |
+
self.positional_encoding = PositionEmbeddingSine(
|
1821 |
+
num_pos_feats=d_model // 2, normalize=True)
|
1822 |
+
|
1823 |
+
def forward(self, x):
|
1824 |
+
b, c, h, w = x.size()
|
1825 |
+
loc, glb = x.split([4, 1], dim=0) # 4,c,h,w; 1,c,h,w
|
1826 |
+
# b(4),c,h,w
|
1827 |
+
patched_glb = rearrange(glb,
|
1828 |
+
'b c (hg h) (wg w) -> (hg wg b) c h w',
|
1829 |
+
hg=2,
|
1830 |
+
wg=2)
|
1831 |
+
|
1832 |
+
# generate token attention map
|
1833 |
+
token_attention_map = self.sigmoid(self.sal_conv(glb))
|
1834 |
+
token_attention_map = F.interpolate(token_attention_map,
|
1835 |
+
size=patches2image(loc).shape[-2:],
|
1836 |
+
mode='nearest')
|
1837 |
+
loc = loc * rearrange(token_attention_map,
|
1838 |
+
'b c (hg h) (wg w) -> (hg wg b) c h w',
|
1839 |
+
hg=2,
|
1840 |
+
wg=2)
|
1841 |
+
pools = []
|
1842 |
+
for pool_ratio in self.pool_ratios:
|
1843 |
+
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
|
1844 |
+
pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw)
|
1845 |
+
pools.append(rearrange(pool,
|
1846 |
+
'nl c h w -> nl c (h w)')) # nl(4),c,hw
|
1847 |
+
# nl(4),c,nphw -> nl(4),nphw,1,c
|
1848 |
+
pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c")
|
1849 |
+
loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c')
|
1850 |
+
outputs = []
|
1851 |
+
for i, q in enumerate(
|
1852 |
+
loc_.unbind(dim=0)): # traverse all local patches
|
1853 |
+
# np*hw,1,c
|
1854 |
+
v = pools[i]
|
1855 |
+
k = v
|
1856 |
+
outputs.append(self.attention[i](q, k, v)[0])
|
1857 |
+
outputs = torch.cat(outputs, 1)
|
1858 |
+
src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs)
|
1859 |
+
src = self.norm1(src)
|
1860 |
+
src = src + self.dropout2(
|
1861 |
+
self.linear4(
|
1862 |
+
self.dropout(self.activation(self.linear3(src)).clone())))
|
1863 |
+
src = self.norm2(src)
|
1864 |
+
|
1865 |
+
src = src.permute(1, 2, 0).reshape(4, c, h, w) # freshed loc
|
1866 |
+
glb = glb + F.interpolate(patches2image(src),
|
1867 |
+
size=glb.shape[-2:],
|
1868 |
+
mode='nearest') # freshed glb
|
1869 |
+
return torch.cat((src, glb), 0)
|
1870 |
+
|
1871 |
+
|
1872 |
+
# model for single-scale training
|
1873 |
+
class MVANet(nn.Module):
|
1874 |
+
|
1875 |
+
def __init__(self):
|
1876 |
+
super().__init__()
|
1877 |
+
self.backbone = SwinB(pretrained=True)
|
1878 |
+
emb_dim = 128
|
1879 |
+
self.sideout5 = nn.Sequential(
|
1880 |
+
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
1881 |
+
self.sideout4 = nn.Sequential(
|
1882 |
+
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
1883 |
+
self.sideout3 = nn.Sequential(
|
1884 |
+
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
1885 |
+
self.sideout2 = nn.Sequential(
|
1886 |
+
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
1887 |
+
self.sideout1 = nn.Sequential(
|
1888 |
+
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
1889 |
+
|
1890 |
+
self.output5 = make_cbr(1024, emb_dim)
|
1891 |
+
self.output4 = make_cbr(512, emb_dim)
|
1892 |
+
self.output3 = make_cbr(256, emb_dim)
|
1893 |
+
self.output2 = make_cbr(128, emb_dim)
|
1894 |
+
self.output1 = make_cbr(128, emb_dim)
|
1895 |
+
|
1896 |
+
self.multifieldcrossatt = MCLM(emb_dim, 1, [1, 4, 8])
|
1897 |
+
self.conv1 = make_cbr(emb_dim, emb_dim)
|
1898 |
+
self.conv2 = make_cbr(emb_dim, emb_dim)
|
1899 |
+
self.conv3 = make_cbr(emb_dim, emb_dim)
|
1900 |
+
self.conv4 = make_cbr(emb_dim, emb_dim)
|
1901 |
+
self.dec_blk1 = MCRM(emb_dim, 1, [2, 4, 8])
|
1902 |
+
self.dec_blk2 = MCRM(emb_dim, 1, [2, 4, 8])
|
1903 |
+
self.dec_blk3 = MCRM(emb_dim, 1, [2, 4, 8])
|
1904 |
+
self.dec_blk4 = MCRM(emb_dim, 1, [2, 4, 8])
|
1905 |
+
|
1906 |
+
self.insmask_head = nn.Sequential(
|
1907 |
+
nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1),
|
1908 |
+
nn.BatchNorm2d(384), nn.PReLU(),
|
1909 |
+
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.BatchNorm2d(384),
|
1910 |
+
nn.PReLU(), nn.Conv2d(384, emb_dim, kernel_size=3, padding=1))
|
1911 |
+
|
1912 |
+
self.shallow = nn.Sequential(
|
1913 |
+
nn.Conv2d(3, emb_dim, kernel_size=3, padding=1))
|
1914 |
+
self.upsample1 = make_cbg(emb_dim, emb_dim)
|
1915 |
+
self.upsample2 = make_cbg(emb_dim, emb_dim)
|
1916 |
+
self.output = nn.Sequential(
|
1917 |
+
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
1918 |
+
|
1919 |
+
for m in self.modules():
|
1920 |
+
if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout):
|
1921 |
+
m.inplace = True
|
1922 |
+
|
1923 |
+
def forward(self, x):
|
1924 |
+
shallow = self.shallow(x)
|
1925 |
+
glb = rescale_to(x, scale_factor=0.5, interpolation='bilinear')
|
1926 |
+
loc = image2patches(x)
|
1927 |
+
input = torch.cat((loc, glb), dim=0)
|
1928 |
+
feature = self.backbone(input)
|
1929 |
+
e5 = self.output5(feature[4]) # (5,128,16,16)
|
1930 |
+
e4 = self.output4(feature[3]) # (5,128,32,32)
|
1931 |
+
e3 = self.output3(feature[2]) # (5,128,64,64)
|
1932 |
+
e2 = self.output2(feature[1]) # (5,128,128,128)
|
1933 |
+
e1 = self.output1(feature[0]) # (5,128,128,128)
|
1934 |
+
loc_e5, glb_e5 = e5.split([4, 1], dim=0)
|
1935 |
+
e5 = self.multifieldcrossatt(loc_e5, glb_e5) # (4,128,16,16)
|
1936 |
+
|
1937 |
+
e4, tokenattmap4 = self.dec_blk4(e4 + resize_as(e5, e4))
|
1938 |
+
e4 = self.conv4(e4)
|
1939 |
+
e3, tokenattmap3 = self.dec_blk3(e3 + resize_as(e4, e3))
|
1940 |
+
e3 = self.conv3(e3)
|
1941 |
+
e2, tokenattmap2 = self.dec_blk2(e2 + resize_as(e3, e2))
|
1942 |
+
e2 = self.conv2(e2)
|
1943 |
+
e1, tokenattmap1 = self.dec_blk1(e1 + resize_as(e2, e1))
|
1944 |
+
e1 = self.conv1(e1)
|
1945 |
+
loc_e1, glb_e1 = e1.split([4, 1], dim=0)
|
1946 |
+
output1_cat = patches2image(loc_e1) # (1,128,256,256)
|
1947 |
+
# add glb feat in
|
1948 |
+
output1_cat = output1_cat + resize_as(glb_e1, output1_cat)
|
1949 |
+
# merge
|
1950 |
+
final_output = self.insmask_head(output1_cat) # (1,128,256,256)
|
1951 |
+
# shallow feature merge
|
1952 |
+
final_output = final_output + resize_as(shallow, final_output)
|
1953 |
+
final_output = self.upsample1(rescale_to(final_output))
|
1954 |
+
final_output = rescale_to(final_output +
|
1955 |
+
resize_as(shallow, final_output))
|
1956 |
+
final_output = self.upsample2(final_output)
|
1957 |
+
final_output = self.output(final_output)
|
1958 |
+
####
|
1959 |
+
sideout5 = self.sideout5(e5).cuda()
|
1960 |
+
sideout4 = self.sideout4(e4)
|
1961 |
+
sideout3 = self.sideout3(e3)
|
1962 |
+
sideout2 = self.sideout2(e2)
|
1963 |
+
sideout1 = self.sideout1(e1)
|
1964 |
+
#######glb_sideouts ######
|
1965 |
+
glb5 = self.sideout5(glb_e5)
|
1966 |
+
glb4 = sideout4[-1, :, :, :].unsqueeze(0)
|
1967 |
+
glb3 = sideout3[-1, :, :, :].unsqueeze(0)
|
1968 |
+
glb2 = sideout2[-1, :, :, :].unsqueeze(0)
|
1969 |
+
glb1 = sideout1[-1, :, :, :].unsqueeze(0)
|
1970 |
+
####### concat 4 to 1 #######
|
1971 |
+
sideout1 = patches2image(sideout1[:-1]).cuda()
|
1972 |
+
sideout2 = patches2image(
|
1973 |
+
sideout2[:-1]).cuda() ####(5,c,h,w) -> (1 c 2h,2w)
|
1974 |
+
sideout3 = patches2image(sideout3[:-1]).cuda()
|
1975 |
+
sideout4 = patches2image(sideout4[:-1]).cuda()
|
1976 |
+
sideout5 = patches2image(sideout5[:-1]).cuda()
|
1977 |
+
if self.training:
|
1978 |
+
return sideout5, sideout4, sideout3, sideout2, sideout1, final_output, glb5, glb4, glb3, glb2, glb1, tokenattmap4, tokenattmap3, tokenattmap2, tokenattmap1
|
1979 |
+
else:
|
1980 |
+
return final_output
|
1981 |
+
|
1982 |
+
|
1983 |
+
# model for multi-scale testing
|
1984 |
+
class inf_MVANet(nn.Module):
|
1985 |
+
|
1986 |
+
def __init__(self):
|
1987 |
+
super().__init__()
|
1988 |
+
self.backbone = SwinB(pretrained=True)
|
1989 |
+
|
1990 |
+
emb_dim = 128
|
1991 |
+
self.output5 = make_cbr(1024, emb_dim)
|
1992 |
+
self.output4 = make_cbr(512, emb_dim)
|
1993 |
+
self.output3 = make_cbr(256, emb_dim)
|
1994 |
+
self.output2 = make_cbr(128, emb_dim)
|
1995 |
+
self.output1 = make_cbr(128, emb_dim)
|
1996 |
+
|
1997 |
+
self.multifieldcrossatt = inf_MCLM(emb_dim, 1, [1, 4, 8])
|
1998 |
+
self.conv1 = make_cbr(emb_dim, emb_dim)
|
1999 |
+
self.conv2 = make_cbr(emb_dim, emb_dim)
|
2000 |
+
self.conv3 = make_cbr(emb_dim, emb_dim)
|
2001 |
+
self.conv4 = make_cbr(emb_dim, emb_dim)
|
2002 |
+
self.dec_blk1 = inf_MCRM(emb_dim, 1, [2, 4, 8])
|
2003 |
+
self.dec_blk2 = inf_MCRM(emb_dim, 1, [2, 4, 8])
|
2004 |
+
self.dec_blk3 = inf_MCRM(emb_dim, 1, [2, 4, 8])
|
2005 |
+
self.dec_blk4 = inf_MCRM(emb_dim, 1, [2, 4, 8])
|
2006 |
+
|
2007 |
+
self.insmask_head = nn.Sequential(
|
2008 |
+
nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1),
|
2009 |
+
nn.BatchNorm2d(384), nn.PReLU(),
|
2010 |
+
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.BatchNorm2d(384),
|
2011 |
+
nn.PReLU(), nn.Conv2d(384, emb_dim, kernel_size=3, padding=1))
|
2012 |
+
|
2013 |
+
self.shallow = nn.Sequential(
|
2014 |
+
nn.Conv2d(3, emb_dim, kernel_size=3, padding=1))
|
2015 |
+
self.upsample1 = make_cbg(emb_dim, emb_dim)
|
2016 |
+
self.upsample2 = make_cbg(emb_dim, emb_dim)
|
2017 |
+
self.output = nn.Sequential(
|
2018 |
+
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
2019 |
+
|
2020 |
+
for m in self.modules():
|
2021 |
+
if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout):
|
2022 |
+
m.inplace = True
|
2023 |
+
|
2024 |
+
def forward(self, x):
|
2025 |
+
shallow = self.shallow(x)
|
2026 |
+
glb = rescale_to(x, scale_factor=0.5, interpolation='bilinear')
|
2027 |
+
loc = image2patches(x)
|
2028 |
+
input = torch.cat((loc, glb), dim=0)
|
2029 |
+
feature = self.backbone(input)
|
2030 |
+
e5 = self.output5(feature[4])
|
2031 |
+
e4 = self.output4(feature[3])
|
2032 |
+
e3 = self.output3(feature[2])
|
2033 |
+
e2 = self.output2(feature[1])
|
2034 |
+
e1 = self.output1(feature[0])
|
2035 |
+
print(e5.shape)
|
2036 |
+
loc_e5, glb_e5 = e5.split([4, 1], dim=0)
|
2037 |
+
e5_cat = self.multifieldcrossatt(loc_e5, glb_e5)
|
2038 |
+
|
2039 |
+
e4 = self.conv4(self.dec_blk4(e4 + resize_as(e5_cat, e4)))
|
2040 |
+
e3 = self.conv3(self.dec_blk3(e3 + resize_as(e4, e3)))
|
2041 |
+
e2 = self.conv2(self.dec_blk2(e2 + resize_as(e3, e2)))
|
2042 |
+
e1 = self.conv1(self.dec_blk1(e1 + resize_as(e2, e1)))
|
2043 |
+
loc_e1, glb_e1 = e1.split([4, 1], dim=0)
|
2044 |
+
# after decoder, concat loc features to a whole one, and merge
|
2045 |
+
output1_cat = patches2image(loc_e1)
|
2046 |
+
# add glb feat in
|
2047 |
+
output1_cat = output1_cat + resize_as(glb_e1, output1_cat)
|
2048 |
+
# merge
|
2049 |
+
final_output = self.insmask_head(output1_cat)
|
2050 |
+
# shallow feature merge
|
2051 |
+
final_output = final_output + resize_as(shallow, final_output)
|
2052 |
+
final_output = self.upsample1(rescale_to(final_output))
|
2053 |
+
final_output = rescale_to(final_output +
|
2054 |
+
resize_as(shallow, final_output))
|
2055 |
+
final_output = self.upsample2(final_output)
|
2056 |
+
final_output = self.output(final_output)
|
2057 |
+
return final_output
|
2058 |
+
#+end_src
|
2059 |
+
|
2060 |
+
** train.execute.py
|
2061 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.execute.py
|
2062 |
+
writer = SummaryWriter()
|
2063 |
+
|
2064 |
+
cudnn.benchmark = True
|
2065 |
+
|
2066 |
+
parser = argparse.ArgumentParser()
|
2067 |
+
parser.add_argument('--epoch', type=int, default=80, help='epoch number')
|
2068 |
+
parser.add_argument('--lr_gen', type=float, default=1e-5, help='learning rate')
|
2069 |
+
parser.add_argument('--batchsize',
|
2070 |
+
type=int,
|
2071 |
+
default=1,
|
2072 |
+
help='training batch size')
|
2073 |
+
parser.add_argument('--trainsize',
|
2074 |
+
type=int,
|
2075 |
+
default=1024,
|
2076 |
+
help='training dataset size')
|
2077 |
+
parser.add_argument('--decay_rate',
|
2078 |
+
type=float,
|
2079 |
+
default=0.9,
|
2080 |
+
help='decay rate of learning rate')
|
2081 |
+
parser.add_argument('--decay_epoch',
|
2082 |
+
type=int,
|
2083 |
+
default=80,
|
2084 |
+
help='every n epochs decay learning rate')
|
2085 |
+
|
2086 |
+
opt = parser.parse_args()
|
2087 |
+
print('Generator Learning Rate: {}'.format(opt.lr_gen))
|
2088 |
+
# build models
|
2089 |
+
if hasattr(torch.cuda, 'empty_cache'):
|
2090 |
+
torch.cuda.empty_cache()
|
2091 |
+
generator = MVANet()
|
2092 |
+
generator.cuda()
|
2093 |
+
print('DEBUG 3')
|
2094 |
+
|
2095 |
+
pretrained_dict = torch.load(
|
2096 |
+
HOME_DIR +
|
2097 |
+
'/GITHUB/aravind-h-v/dreambooth_experiments/cloth_segmentation/MVANet_Train/pretrained_model/Model_80.pth',
|
2098 |
+
map_location='cuda')
|
2099 |
+
|
2100 |
+
model_dict = generator.state_dict()
|
2101 |
+
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
|
2102 |
+
model_dict.update(pretrained_dict)
|
2103 |
+
generator.load_state_dict(model_dict)
|
2104 |
+
|
2105 |
+
generator_params = generator.parameters()
|
2106 |
+
# generator_optimizer = torch.optim.Adam(generator_params, opt.lr_gen)
|
2107 |
+
generator_optimizer = Prodigy(generator_params, lr=1., weight_decay=0.01)
|
2108 |
+
|
2109 |
+
print('DEBUG 4')
|
2110 |
+
|
2111 |
+
image_root = './data/image/'
|
2112 |
+
gt_root = './data/mask/'
|
2113 |
+
|
2114 |
+
train_loader = get_loader(image_root,
|
2115 |
+
gt_root,
|
2116 |
+
batchsize=opt.batchsize,
|
2117 |
+
trainsize=opt.trainsize)
|
2118 |
+
|
2119 |
+
print('DEBUG 5')
|
2120 |
+
|
2121 |
+
total_step = len(train_loader)
|
2122 |
+
to_pil = transforms.ToPILImage()
|
2123 |
+
## define loss
|
2124 |
+
print('DEBUG 2')
|
2125 |
+
|
2126 |
+
CE = torch.nn.BCELoss()
|
2127 |
+
mse_loss = torch.nn.MSELoss(size_average=True, reduce=True)
|
2128 |
+
size_rates = [1]
|
2129 |
+
criterion = nn.BCEWithLogitsLoss().cuda()
|
2130 |
+
criterion_mae = nn.L1Loss().cuda()
|
2131 |
+
criterion_mse = nn.MSELoss().cuda()
|
2132 |
+
use_fp16 = True
|
2133 |
+
scaler = amp.GradScaler(enabled=use_fp16)
|
2134 |
+
print('DEBUG 1')
|
2135 |
+
|
2136 |
+
for epoch in range(1, opt.epoch + 1):
|
2137 |
+
torch.cuda.empty_cache()
|
2138 |
+
generator.train()
|
2139 |
+
# loss_record = AvgMeter()
|
2140 |
+
loss_record = Running_Avg()
|
2141 |
+
print('Generator Learning Rate: {}'.format(
|
2142 |
+
generator_optimizer.param_groups[0]['lr']))
|
2143 |
+
for i, pack in enumerate(train_loader, start=1):
|
2144 |
+
torch.cuda.empty_cache()
|
2145 |
+
for rate in size_rates:
|
2146 |
+
torch.cuda.empty_cache()
|
2147 |
+
generator_optimizer.zero_grad()
|
2148 |
+
images, gts = pack
|
2149 |
+
images = Variable(images)
|
2150 |
+
gts = Variable(gts)
|
2151 |
+
images = images.cuda()
|
2152 |
+
gts = gts.cuda()
|
2153 |
+
trainsize = int(round(opt.trainsize * rate / 32) * 32)
|
2154 |
+
if rate != 1:
|
2155 |
+
images = F.upsample(images,
|
2156 |
+
size=(trainsize, trainsize),
|
2157 |
+
mode='bilinear',
|
2158 |
+
align_corners=True)
|
2159 |
+
gts = F.upsample(gts,
|
2160 |
+
size=(trainsize, trainsize),
|
2161 |
+
mode='bilinear',
|
2162 |
+
align_corners=True)
|
2163 |
+
|
2164 |
+
b, c, h, w = gts.size()
|
2165 |
+
target_1 = F.upsample(gts, size=h // 4, mode='nearest')
|
2166 |
+
target_2 = F.upsample(gts, size=h // 8, mode='nearest').cuda()
|
2167 |
+
target_3 = F.upsample(gts, size=h // 16, mode='nearest').cuda()
|
2168 |
+
target_4 = F.upsample(gts, size=h // 32, mode='nearest').cuda()
|
2169 |
+
target_5 = F.upsample(gts, size=h // 64, mode='nearest').cuda()
|
2170 |
+
|
2171 |
+
with amp.autocast(enabled=use_fp16):
|
2172 |
+
sideout5, sideout4, sideout3, sideout2, sideout1, final, glb5, glb4, glb3, glb2, glb1, tokenattmap4, tokenattmap3, tokenattmap2, tokenattmap1 = generator.forward(
|
2173 |
+
images)
|
2174 |
+
loss1 = structure_loss(sideout5, target_4)
|
2175 |
+
loss2 = structure_loss(sideout4, target_3)
|
2176 |
+
loss3 = structure_loss(sideout3, target_2)
|
2177 |
+
loss4 = structure_loss(sideout2, target_1)
|
2178 |
+
loss5 = structure_loss(sideout1, target_1)
|
2179 |
+
loss6 = structure_loss(final, gts)
|
2180 |
+
loss7 = structure_loss(glb5, target_5)
|
2181 |
+
loss8 = structure_loss(glb4, target_4)
|
2182 |
+
loss9 = structure_loss(glb3, target_3)
|
2183 |
+
loss10 = structure_loss(glb2, target_2)
|
2184 |
+
loss11 = structure_loss(glb1, target_2)
|
2185 |
+
loss12 = structure_loss(tokenattmap4, target_3)
|
2186 |
+
loss13 = structure_loss(tokenattmap3, target_2)
|
2187 |
+
loss14 = structure_loss(tokenattmap2, target_1)
|
2188 |
+
loss15 = structure_loss(tokenattmap1, target_1)
|
2189 |
+
loss = loss1 + loss2 + loss3 + loss4 + loss5 + loss6 + 0.3 * (
|
2190 |
+
loss7 + loss8 + loss9 + loss10 +
|
2191 |
+
loss11) + 0.3 * (loss12 + loss13 + loss14 + loss15)
|
2192 |
+
Loss_loc = loss1 + loss2 + loss3 + loss4 + loss5 + loss6
|
2193 |
+
Loss_glb = loss7 + loss8 + loss9 + loss10 + loss11
|
2194 |
+
Loss_map = loss12 + loss13 + loss14 + loss15
|
2195 |
+
writer.add_scalar('loss', loss.item(),
|
2196 |
+
epoch * len(train_loader) + i)
|
2197 |
+
|
2198 |
+
generator_optimizer.zero_grad()
|
2199 |
+
scaler.scale(loss).backward()
|
2200 |
+
scaler.step(generator_optimizer)
|
2201 |
+
scaler.update()
|
2202 |
+
|
2203 |
+
if rate == 1:
|
2204 |
+
loss_record.update(loss.data, opt.batchsize)
|
2205 |
+
|
2206 |
+
if i % 10 == 0 or i == total_step:
|
2207 |
+
print(
|
2208 |
+
'{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], gen Loss: {:.4f}'
|
2209 |
+
.format(datetime.now(), epoch, opt.epoch, i, total_step,
|
2210 |
+
loss_record.show()))
|
2211 |
+
|
2212 |
+
if i % 8000 == 0 or i == total_step:
|
2213 |
+
save_path = './saved_model/'
|
2214 |
+
if not os.path.exists(save_path):
|
2215 |
+
os.mkdir(save_path)
|
2216 |
+
torch.save(
|
2217 |
+
generator.state_dict(),
|
2218 |
+
save_path + 'Model' + '_%d' % epoch + '_%d' % i + '.pth')
|
2219 |
+
|
2220 |
+
# adjust_lr(generator_optimizer, opt.lr_gen, epoch, opt.decay_rate,
|
2221 |
+
# opt.decay_epoch)
|
2222 |
+
# save checkpoints every 20 epochs
|
2223 |
+
# if epoch % 20 == 0:
|
2224 |
+
if True:
|
2225 |
+
|
2226 |
+
save_path = './saved_model/'
|
2227 |
+
if not os.path.exists(save_path):
|
2228 |
+
os.mkdir(save_path)
|
2229 |
+
|
2230 |
+
save_path = './saved_model/MVANet/'
|
2231 |
+
if not os.path.exists(save_path):
|
2232 |
+
os.mkdir(save_path)
|
2233 |
+
|
2234 |
+
torch.save(generator.state_dict(),
|
2235 |
+
save_path + 'Model' + '_%d' % epoch + '.pth')
|
2236 |
+
#+end_src
|
2237 |
+
|
2238 |
+
* SAMPLE
|
2239 |
+
|
2240 |
+
** train
|
2241 |
+
|
2242 |
+
*** train.import.py
|
2243 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
|
2244 |
+
#+end_src
|
2245 |
+
|
2246 |
+
*** train.function.py
|
2247 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.function.py
|
2248 |
+
#+end_src
|
2249 |
+
|
2250 |
+
*** train.class.py
|
2251 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.class.py
|
2252 |
+
#+end_src
|
2253 |
+
|
2254 |
+
*** train.execute.py
|
2255 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.execute.py
|
2256 |
+
#+end_src
|
2257 |
+
|
2258 |
+
** swin
|
2259 |
+
|
2260 |
+
*** swin.import.py
|
2261 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.import.py
|
2262 |
+
#+end_src
|
2263 |
+
|
2264 |
+
*** swin.function.py
|
2265 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.function.py
|
2266 |
+
#+end_src
|
2267 |
+
|
2268 |
+
*** swin.class.py
|
2269 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.class.py
|
2270 |
+
#+end_src
|
2271 |
+
|
2272 |
+
* UNIFY
|
2273 |
+
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./train.unify.sh
|
2274 |
+
. "${HOME}/dbnew.sh"
|
2275 |
+
|
2276 |
+
echo '#!/usr/bin/python3' > './train.py'
|
2277 |
+
|
2278 |
+
cat \
|
2279 |
+
'./train.import.py' \
|
2280 |
+
'./train.function.py' \
|
2281 |
+
'./train.class.py' \
|
2282 |
+
'./train.execute.py' \
|
2283 |
+
| expand | yapf3 \
|
2284 |
+
| grep -v '^#!/usr/bin/python3$' \
|
2285 |
+
>> './train.py' \
|
2286 |
+
;
|
2287 |
+
|
2288 |
+
echo '#!/usr/bin/python3' > './swin.py'
|
2289 |
+
|
2290 |
+
cat \
|
2291 |
+
'./swin.import.py' \
|
2292 |
+
'./swin.function.py' \
|
2293 |
+
'./swin.class.py' \
|
2294 |
+
| expand | yapf3 \
|
2295 |
+
| grep -v '^#!/usr/bin/python3$' \
|
2296 |
+
>> './swin.py' \
|
2297 |
+
;
|
2298 |
+
|
2299 |
+
rm -vf -- \
|
2300 |
+
'./swin.class.py' \
|
2301 |
+
'./swin.function.py' \
|
2302 |
+
'./swin.import.py' \
|
2303 |
+
'./train.class.py' \
|
2304 |
+
'./train.execute.py' \
|
2305 |
+
'./train.function.py' \
|
2306 |
+
'./train.import.py' \
|
2307 |
+
'./train.unify.sh' \
|
2308 |
+
;
|
2309 |
+
#+end_src
|
2310 |
+
|
2311 |
+
* Run
|
2312 |
+
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./run.sh
|
2313 |
+
. "${HOME}/dbnew.sh"
|
2314 |
+
|
2315 |
+
cd "$('dirname' '--' "${0}")"
|
2316 |
+
|
2317 |
+
pip3 install -r './requirements.txt'
|
2318 |
+
|
2319 |
+
python3 ./train.py --batchsize 4
|
2320 |
+
#+end_src
|
2321 |
+
|
2322 |
+
* WORK SPACE
|
2323 |
+
|
2324 |
+
** ELISP
|
2325 |
+
#+begin_src elisp
|
2326 |
+
(save-buffer)
|
2327 |
+
(org-babel-tangle)
|
2328 |
+
(shell-command "./train.unify.sh")
|
2329 |
+
#+end_src
|
2330 |
+
|
2331 |
+
#+RESULTS:
|
2332 |
+
: 0
|
2333 |
+
|
2334 |
+
** SHELL
|
2335 |
+
#+begin_src sh :shebang #!/bin/sh :results output
|
2336 |
+
realpath .
|
2337 |
+
cd /home/asd/GITHUB/aravind-h-v/dreambooth_experiments/cloth_segmentation/MVANet_Train
|
2338 |
+
#+end_src
|