File size: 1,644 Bytes
c22200e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from transformers import PretrainedConfig
from typing import Sequence

class DMAE1dConfig(PretrainedConfig):

    model_type = "archinetai/dmae1d-ATC64-v1"

    def __init__(
        self,
        in_channels: int = 2,  
        channels: int = 512,              
        multipliers: Sequence[int] = [3, 2, 1, 1, 1, 1, 1, 1],
        factors: Sequence[int] = [1, 2, 2, 2, 2, 2, 2],
        num_blocks: Sequence[int] = [1, 1, 1, 2, 2, 2, 2],
        attentions: Sequence[int] = [0, 0, 0, 0, 0, 0, 0], 
        encoder_inject_depth: int = 3,
        encoder_channels: int = 32,
        encoder_factors: Sequence[int] = [1, 1, 2, 2, 1, 1],
        encoder_multipliers: Sequence[int] = [32, 16, 8, 8, 4, 2, 1],
        encoder_num_blocks: Sequence[int] = [4, 4, 4, 4, 4, 4],
        bottleneck: str = 'tanh',
        stft_use_complex: bool = True, 
        stft_num_fft: int = 1023,
        stft_hop_length: int = 256,
        **kwargs 
    ):
        self.in_channels = in_channels 
        self.channels = channels 
        self.multipliers = multipliers 
        self.factors = factors 
        self.num_blocks = num_blocks 
        self.attentions = attentions 
        self.encoder_inject_depth = encoder_inject_depth 
        self.encoder_channels = encoder_channels 
        self.encoder_factors = encoder_factors
        self.encoder_multipliers = encoder_multipliers 
        self.encoder_num_blocks = encoder_num_blocks
        self.bottleneck = bottleneck 
        self.stft_use_complex = stft_use_complex 
        self.stft_num_fft = stft_num_fft 
        self.stft_hop_length = stft_hop_length 
        super().__init__(**kwargs)